Probabilistic Graphical Models

Lecture 13 – Loopy Belief Propagation

CS/CNS/EE 155
Andreas Krause
Announcements

- Homework 3 out
 - Lighter problem set to allow more time for project

- Next Monday: Guest lecture by Dr. Baback Moghaddam from the JPL Machine Learning Group

- PLEASE fill out feedback forms
 - This is a new course
 - Your feedback can have major impact in future offerings!!
HMMs / Kalman Filters

- Most famous Graphical models:
 - Naïve Bayes model
 - Hidden Markov model
 - Kalman Filter

- Hidden Markov models
 - Speech recognition
 - Sequence analysis in comp. bio

- Kalman Filters control
 - Cruise control in cars
 - GPS navigation devices
 - Tracking missiles..

- Very simple models but very powerful!!
HMMs / Kalman Filters

- X_1, \ldots, X_T: Unobserved (hidden) variables
- Y_1, \ldots, Y_T: Observations
- HMMs: X_i Multinomial, Y_i arbitrary
- Kalman Filters: X_i, Y_i Gaussian distributions
 - Non-linear KF: X_i Gaussian, Y_i arbitrary
Hidden Markov Models

- Inference:
 - In principle, can use VE, JT etc.
 - New variables X_t, Y_t at each time step \Rightarrow need to rerun

- Bayesian Filtering:
 - Suppose we already have computed $P(X_t \mid y_{1,...,t})$
 - Want to efficiently compute $P(X_{t+1} \mid y_{1,...,t+1})$
Bayesian filtering

- Start with $P(X_1)$
- At time t
 - Assume we have $P(X_t \mid y_{1\ldots t-1})$
 - Condition: $P(X_t \mid y_{1\ldots t})$

$$
P(X_t \mid y_{1\ldots t}) \propto P(X_t \mid y_{1\ldots t-1}) \cdot \frac{P(Y_t \mid X_t, Y_{1\ldots t-1})}{P(Y_t \mid X_t)}$$

- Prediction: $P(X_{t+1}, X_t \mid y_{1\ldots t})$
 $$
P(X_{t+1}, X_t \mid y_{1\ldots t}) = P(X_t \mid y_{1\ldots t}) \cdot \frac{P(X_{t+1} \mid X_t, y_{1\ldots t})}{P(X_{t+1} \mid X_t)} = P(X_{t+1} \mid X_t)$$

 "Rollup"

- Marginalization: $P(X_{t+1} \mid y_{1\ldots t})$
 $$
P(X_{t+1} \mid y_{1\ldots t}) = \sum_{X_t} P(X_{t+1}, X_t \mid y_{1\ldots t})$$
Kalman Filters (Gaussian HMMs)

- X_1, \ldots, X_T: Location of object being tracked
- Y_1, \ldots, Y_T: Observations
- $P(X_1)$: Prior belief about location at time 1
- $P(X_{t+1} | X_t)$: “Motion model”
 - How do I expect my target to move in the environment?
 - Represented as CLG: $X_{t+1} = A X_t + N(0, \Sigma_M)$
- $P(Y_t | X_t)$: “Sensor model”
 - What do I observe if target is at location X_t?
 - Represented as CLG: $Y_t = H X_t + N(0, \Sigma_O)$
Bayesian Filtering for KFs

- Can use Gaussian elimination to perform inference in “unrolled” model

Start with prior belief $P(X_1)$

At every timestep have belief $P(X_t \mid y_{1:t-1})$

- Condition on observation: $P(X_t \mid y_{1:t})$
- Predict (multiply motion model): $P(X_{t+1}, X_t \mid y_{1:t})$
- “Roll-up” (marginalize prev. time): $P(X_{t+1} \mid y_{1:t})$
What if observations not “linear”?

- **Linear observations:**
 - $Y_t = H X_t + \text{noise}$

- **Nonlinear observations:**
 - "Motion detector": $Y_t = 1$ if $X_t \in R$
 - $= 0$ otherwise

- $P(X_t)$
- $P(X_t | Y_t = 1)$
- $P(X_t | Y_t = 0)$
Incorporating Non-gaussian observations

- Nonlinear observation $\Rightarrow P(Y_t | X_t)$ not Gaussian 😞
- Make it Gaussian! 😊
- First approach: Approximate $P(Y_t | X_t)$ as CLG
 - Linearize $P(Y_t | X_t)$ around current estimate $E[X_t | y_{1..t-1}]$
 - Known as Extended Kalman Filter (EKF)
 - Can perform poorly if $P(Y_t | X_t)$ highly nonlinear

- Second approach: Approximate $P(Y_t, X_t)$ as Gaussian
 - Takes correlation in X_t into account
 - After obtaining approximation, condition on $Y_t=y_t$
 (now a “linear” observation)
Factored dynamical models

- So far: HMMs and Kalman filters

What if we have more than one variable at each time step?
- E.g., temperature at different locations, or road conditions in a road network?
 ➔ Spatio-temporal models
Dynamic Bayesian Networks

- At every timestep have a Bayesian Network

\[S_t \equiv \{ A_t, B_t, \ldots, E_t \} \]

- Variables at each time step \(t \) called a “slice” \(S_t \)
- “Temporal” edges connecting \(S_{t+1} \) with \(S_t \)
Flow of influence in DBNs

A1 → A2 → A3 → A4
S1 → S2 → S3 → S4
L1 → L2 → L3 → L4

A_1 \perp S_1 \checkmark
A_1 \perp L_1 \checkmark
A_2 \perp S_2 \times
A_2 \perp L_2 \checkmark
A_3 \perp L_3 \times

acceleration
speed
location

Can we do efficient filtering in BNs?
Efficient inference in DBNs?

A1, B1, C1, D1

A2, B2, C2, D2

DBN

P(A2, B2, C2, D2)

fully connected
Approximate inference in DBNs?

How can we find principled approximations that still allow efficient inference??
Assumed Density Filtering

True marginal $P(X_t)$ fully connected
Want to find “simpler” distribution $Q(X_t)$ such that $P(X_t) \approx Q(X_t)$
Optimize over parameters of Q to make Q as “close” to P as possible
Similar to incorporating non-linear observations in KF!
More details later (variational inference)!

Formally:

$$Q^* = \underset{Q}{\arg\min} \, KL(P \, || \, Q)$$
Big picture summary

States of the world, sensor measurements, ...

Want to choose a model that ...

- **represents** relevant statistical dependencies between variables
- we can use to make **inferences** (make predictions, etc.)
- we can **learn** from training data
What you have learned so far

• **Representation**
 - Bayesian Networks
 - Markov Networks
 - Conditional independence is key

• **Inference**
 - Variable Elimination and Junction tree inference
 - Exact inference possible if graph has low treewidth

• **Learning**
 - **Parameters**: Can do MLE and Bayesian learning in Bayes Nets and Markov Nets if data fully observed
 - **Structure**: Can find optimal tree
Representation

- Conditional independence = Factorization
- Represent factorization/independence as graph
 - Directed graphs: Bayesian networks
 - Undirected graphs: Markov networks
- Typically, assume factors in exponential family (e.g., Multinomial, Gaussian, ...)

So far, we assumed all variables in the model are known

- In practice
 - Existence of variables can depend on data
 - Number of variables can grow over time
 - We might have hidden (unobserved variables)!
Key idea: Exploit factorization (distributivity)

Complexity of inference depends on treewidth of underlying model

- Junction tree inference “only” exponential in treewidth

In practice, often have high treewidth

- Always high treewidth in DBNs
 ➔ Need approximate inference
Learning

- Maximum likelihood estimation
 - **In BNs**: independent optimization for each CPT (decomposable score)
 - **In MNs**: Partition function couples parameters, but can do gradient ascent (no local optima!)

- Bayesian parameter estimation
 - Conjugate priors convenient to work with

- Structure learning
 - NP-hard in general
 - Can find optimal tree (Chow Liu)

- So far: Assumed all variables are observed
 - In practice: often have missing data
The “light” side

Assumed
- everything fully observable
- low treewidth
- no hidden variables

Then everything is nice 😊
- Efficient exact inference in large models
- Optimal parameter estimation without local minima
- Can even solve some structure learning tasks exactly
In the real world, these assumptions are often violated.

Still want to use graphical models to solve interesting problems.
Remaining Challenges

- Representation:
 - Dealing with hidden variables
 - **Approximate inference** for high-treewidth models
 - Dealing with missing data

- This will be focus of remaining part of the course!
Recall: Hardness of inference

Computing conditional distributions:
- Exact solution: \(\#P\text{-complete} \)
- Approximate solution: \(NP\text{-hard} \)

Maximization:
- MPE: \(NP\text{-complete} \)
- MAP: \(NP^{PP}\text{-complete} \)
Inference

- Can exploit structure (conditional independence) to efficiently perform **exact inference** in many practical situations
 - Whenever the graph is low treewidth
 - Whenever there is **context-specific independence**
 - Several other special cases

- For BNs where exact inference is not possible, can use algorithms for **approximate inference**
 - Coming up now!
Approximate inference

- Three major classes of general-purpose approaches

 - **Message passing**
 - E.g.: Loopy Belief Propagation (today!)

 - **Inference as optimization**
 - Approximate posterior distribution by simple distribution
 - Mean field / structured mean field

 - **Sampling based inference**
 - Importance sampling, particle filtering
 - Gibbs sampling, MCMC

- Many other alternatives (often for special cases)
Recall: Message passing in Junction trees

Messages between clusters:

\[
\begin{align*}
\mathcal{S}_{4 \to 6}(J, S, L) &= \sum_{g} \prod_{(g, J, S, L)} \mathcal{S}_{5 \to 6}(g, S) \cdot \mathcal{S}_{5 \to 6}(g, L)
\end{align*}
\]
BP on Tree Pairwise Markov Nets

- Suppose graph is given as tree pairwise Markov net
- Don’t need a junction tree!
 - Graph is already a tree!
- Example message:
 \[
 \sum_{G \to L}(L) = \sum_{G} \prod_{L_i \in L} \prod_{j \in G} \sum_{G_j \to G}(G_j) \sum_{i \to G}(G)
 \]
- More generally:
 \[
 \delta_{i \to j}(x_i) = \sum_{x_j} \prod_{i \neq j} \prod_{x_i} \prod_{x_j} \prod_{\bar{S} \in N(i) \setminus \{j\}} \sum_{S \to i}(x_i)
 \]
- **Theorem**: For trees, get correct answer!
Loopy BP on arbitrary pairwise MNs

- What if we apply BP to a graph with loops?
 - Apply BP and hope for the best..

 \[
 \delta_{i \rightarrow j}(X_j) = \sum_{x_i} \pi_i(x_i) \pi_{i,j}(x_i, X_j) \prod_{s \in N(i) \setminus \{j\}} \delta_{s \rightarrow i}(x_i)
 \]

- Will not generally converge..

- If it converges, will not necessarily get correct marginals

 \[
 \hat{p}(x_i) \propto \prod_{s \in N(i)} \delta_{s \rightarrow i}(x_i)
 \]

- However, in practice, answers often still useful!
Practical aspects of Loopy BP

- Messages product of numbers \(\leq 1 \)

\[
\delta_{i \rightarrow j}(X_j) = \sum_{x_i} \pi_i(x_i) \pi_{i,j}(x_i, X_j) \prod_{s \in N(i) \setminus \{j\}} \delta_{s \rightarrow i}(x_i)
\]

- On loopy graphs, repeatedly multiply same factors \(\Rightarrow \) products converge to 0 (numerical problems)

- Solution:
 - Renormalize!

 \[
 \delta_{i \rightarrow j}(X_j) = \frac{1}{Z_{i \rightarrow j}} \sum_{x_i} \pi_i(x_i) \pi_{i,j}(x_i, X_j) \prod_{s \in N(i) \setminus \{j\}} \delta_{s \rightarrow i}(x_i)
 \]

 - Does not affect outcome:

\[
\hat{P}(X_i) \propto \prod_{s \in N(i)} \delta_{s \rightarrow i}(x_i) \cdot (2^{z_i - \phi_i})
\]
Behavior of BP

- Loopy BP multiplies same potentials multiple times
- BP often overconfident
When do we stop?

Messages

\[\delta_{i \rightarrow j}^{(t+1)}(X_j) = \frac{1}{Z_{i \rightarrow j}} \sum_{x_i} \pi_i(x_i) \pi_{i,j}(x_i, X_j) \prod_{s \in N(i) \setminus \{j\}} \delta_{s \rightarrow i}^{(t)}(x_i) \]

Stop if messages "don’t change much"

\[| \delta_{i \rightarrow j}^{(t+1)} - \delta_{i \rightarrow j}^{(t)} | \leq \varepsilon \quad \forall i, j \]
Does Loopy BP always converge?

- No! Can oscillate!
- Typically, oscillation the more severe the more “deterministic” the potentials

Graphs from K. Murphy UAI ‘99
What can we do to make BP converge?

Damping:

\[\hat{S}_{i \rightarrow j}^{(k+1)} = (1-d) \hat{S}_{i \rightarrow j}^{(k)} + d \hat{S}_{i \rightarrow j}^{(k-1)} \]

\[\text{What I said} \]

\[\text{"Correct" BP message} \]

\[\text{What I sent last time} \]

If we need to dampen, answer will most likely be bad
Can we prove convergence of BP?

- Yes, for special types of graphs (e.g., random graphs arising in coding)

- Sometimes can prove that message update “contracts”
What if we have non-pairwise MNs?

- Two approaches:
 - Convert to pairwise MN (possibly exponential blowup)
 - Perform BP on factor graph
BP on factor graphs

- Messages from nodes to factors

\[s_{x \rightarrow \phi}(x) = \frac{1}{Z} \prod_{\phi' \in N(x) \setminus \{\phi\}} s_{\phi' \rightarrow x}(x) \]

- Messages from factors to nodes

\[s_{\phi \rightarrow x}(x) = \frac{1}{Z} \sum_{x_{\phi} \sim x} \phi(x_{\phi}) \prod_{x' \in N(\phi) \setminus \{x\}} s_{x' \rightarrow \phi}(x) \]
Loopy BP vs Junction tree

Both BP and JT inference are “ends of a spectrum”
Other message passing algorithms

- Gaussian Belief propagation
- BP based on particle filters (see sampling)
- Expectation propagation
- ...