Homework 3 out, due Wed Nov 24
 - Questions 1 & 3 already covered
 - MDPs (question 2) coming up Wednesday

Code for project final released later today
Temporal models

So far: “Static” models (no notion of time)
 - Variables don’t change values

In practice:
 - World changes over time
 - Want to “keep track” of change by using probabilistic inference

Basic idea: Create “copies” of variables, one per time step
Dynamical models

- Static model

Rain

- Dynamic model

$\text{Rain}_1 \rightarrow \text{Rain}_2 \rightarrow \text{Rain}_3 \rightarrow \ldots$

- Assumes *discrete, unit-length* time steps!
Markov chains

Markov assumption:
- 1st order MC: $X_t \perp X_{t-2} \mid X_{t-1}$
- k-th order MC: $X_t \perp X_{t-k-1} \mid X_{t-k:t-1}$

Stationarity assumption:
- 1st order: $P(X_t \mid X_{t-1})$ independent of t
- k-th order: $P(X_t \mid X_{t-k:t-1})$ constant
E.g.: Given that it rains now, how likely is it to rain a week from now?

Sps. I know \(P(X_t) \), \(P(X_t | X_{t-1}) \)

What is \(P(X_t) \)?

\[
P(X_t) = \sum_{X_{1:t-1}} P(X_{1:t}) = \sum_{X_{1:t-1}} \frac{P(X_t | X_{1:t-1}) \cdot P(X_{1:t-1})}{P(X_{t-1}) \cdot P(X_{1:t-2} | X_{t-1})}
\]

\[
= \sum_{X_{t-1}} P(X_t | X_{t-1}) \cdot P(X_{t-1}) \cdot \sum_{X_{1:t-2} | X_{t-1}} P(X_{1:t-2} | X_{t-1})
\]

\[
= \sum_{X_{t-1}} P(X_t | X_{t-1}) \cdot P(X_{t-1}) \cdot \frac{1}{P(X_{t-1})}
\]
Prediction in Markov Chains

\[P_t = P(X_t) = \sum_{X_{t-1}} P(X_{t-1}) P(X_t | X_{t-1}) \]

\[P_t = p_{t-1} T \]

\[p_0 T^t \]

\[T = \begin{pmatrix} P(1|1) & \ldots & P(k|1) \\ \vdots & \ddots & \vdots \\ P(1|k) & \ldots & P(k|k) \end{pmatrix} \]

"transition matrix"
HMMs / Kalman Filters

- Most famous Bayesian networks:
 - Naïve Bayes model
 - Hidden Markov model
 - Kalman Filter

- Hidden Markov models
 - Speech recognition
 - Sequence analysis in comp. bio

- Kalman Filters control
 - Cruise control in cars
 - GPS navigation devices
 - Tracking missiles..

- Very simple models but very powerful!!
HMMs / Kalman Filters

- X_1, \ldots, X_T: Unobserved (hidden) variables
- Y_1, \ldots, Y_T: Observations
- **HMMs**: X_i Multinomial, Y_i multinomial (or arbitrary)
- **Kalman Filters**: X_i, Y_i Gaussian distributions
HMMs for speech recognition

Words

\[X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow X_5 \rightarrow X_6 \]

Phoneme

\[Y_1 \rightarrow Y_2 \rightarrow Y_3 \rightarrow Y_4 \rightarrow Y_5 \rightarrow Y_6 \]

“He ate the cookies on the couch”
Example: Umbrella world

Rain

<table>
<thead>
<tr>
<th>R_{t-1}</th>
<th>$P(R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\downarrow</td>
<td>\uparrow</td>
</tr>
<tr>
<td>\downarrow</td>
<td>\uparrow</td>
</tr>
<tr>
<td>\downarrow</td>
<td>\uparrow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R_t</th>
<th>$P(U_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.9</td>
</tr>
<tr>
<td>f</td>
<td>0.2</td>
</tr>
</tbody>
</table>

$P(R_t | R_{t-1}) = 0.7$

Rain

Umbrella

Umbrella

Umbrella

Umbrella

Umbrella

Umbrella

Umbrella
Inference tasks

Filtering \[P(X_T | Y_{1:T}) \]

Prediction \[P(X_{T+\delta} | Y_{1:T}) \]

Smoothing \[P(X_t | Y_{1:T}) \] \(1 \leq t \leq T\)

Most probable explanation \[\arg\max_{X_{1:T}} P(X_{1:T} | Y_{1:T}) \]
Inference in Hidden Markov Models

- **Inference:**
 - In principle, can use variable elimination / belief propagation
 - New variables X_t, Y_t at each time step \rightarrow need to rerun
 - Complexity grows with time!!

- **Bayesian Filtering:**
 - Suppose we already have computed $P(X_t \mid y_{1,...,t})$
 - Want to efficiently (recursively) compute $P(X_{t+1} \mid y_{1,...,t+1})$

\[
P(X_{t+1} (y_{1:t+1}) = \mathbb{I} (y_{t+1} \mid P(X_t | y_{1:t}))
\]
Bayesian filtering

- Start with $P(X_1)$
- At time t
 - Assume we have $P(X_t \mid y_{1\ldots t-1})$
 - **Conditioning:** $P(X_t \mid y_{1\ldots t})$
 \[
 P(X_t \mid y_{1\ldots t}) = \frac{1}{2} P(x_t \mid y_{1\ldots t-1}) \cdot P(y_t \mid x_t)
 \]
 - **Prediction:** $P(X_{t+1} \mid y_{1\ldots t})$
 \[
 P(X_{t+1} \mid y_{1\ldots t}) = \sum_{X_t} P(X_{t+1}, x_t \mid y_{1\ldots t})
 \]
 \[
 = \sum_{X_t} P(x_t \mid y_{1\ldots t}) \frac{P(x_{t+1} \mid x_t, y_{1\ldots t})}{P(x_{t+1} \mid x_t)}
 \]
 \[
 For \ k \ states, \ can \ do \ filtering \ in \ O(k^4)
 \]

\[
\text{have} \quad P(x_t)
\]
\[
\text{want} \quad P(x_t \mid x_t)
\]
\[
= \frac{1}{2} P(y_t \mid x_t) \cdot P(y_t)
\]
\[
\text{Bayes' rule}
\]
Understanding Bayesian filtering

![Bayesian filtering diagram](image)

- **True** 0.500 → 0.500 → 0.627
- **False** 0.500 → 0.500 → 0.373
- **Prediction** 0.818 → 0.182
- **Conditioning** 0.883 → 0.117

Rain → **Umbrella**
HMM for robot localization

(a) Posterior distribution over robot location after $E_1 = \text{NSW}$

(b) Posterior distribution over robot location after $E_1 = \text{NSW}, \ E_2 = \text{NS}$
Prediction in HMMs

- Have: $P(X_t \mid y_{1:t})$
- Want: $P(X_{t+k} \mid y_{1:t})$

Just leave out conditioning! $X_{t:t+k} \mid y_{1:t}$ is MC!

\[p_t = P(X_t \mid y_{1:t}) \]
\[p_{t+k} = p_t \cdot T^k \]

\[T = \begin{pmatrix}
 P(111) & \cdots & P(1k1) \\
 \vdots & \ddots & \vdots \\
 P(11k) & \cdots & P(k1k)
\end{pmatrix} \]
Smoothing / MPE

- **Smoothing:** \(P(X_t \mid y_{1:T}) \)

- **Most probable explanation:** \(\arg \max_{x_{1:T}} P(x_{1:T} \mid y_{1:T}) \)

- **HMM is polytree Bayesian network!**

- **Can use sum product** (aka forward-backward) for smoothing and **max product** (aka Viterbi algo) for MPE

- **Specialized implementations using matrix algebra**
Kalman filters

- Track objects in *continuous domain* using noisy measurements
 - E.g., birds flying, robots moving, chemical plants, ...

- System described using Gaussian variables
 - E.g., location in X,Y,Z; velocity in X,Y,Z; acceleration in X,Y,Z,...

![Diagram of Kalman filter system]
Bivariate Gaussian distribution

\[
\frac{1}{2\pi \sqrt{|\Sigma|}} \exp \left(-\frac{1}{2} (y - \mu)^T \Sigma^{-1} (y - \mu) \right)
\]

\[
\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]

\[
\Sigma = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}
\]
Multivariate Gaussian distribution

\[
\mathcal{N}(y; \Sigma, \mu) = \frac{1}{(2\pi)^{n/2}\sqrt{|\Sigma|}} \exp \left(-\frac{1}{2} (y - \mu)^T \Sigma^{-1} (y - \mu) \right)
\]

\[
\Sigma = \begin{pmatrix}
\sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\
\sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1n} & \sigma_{2n} & \cdots & \sigma_n^2
\end{pmatrix}
\]
Kalman Filters (Gaussian HMMs)

- \(X_1, \ldots, X_T \): Location of object being tracked \(\in \mathbb{R}^d \)
- \(Y_1, \ldots, Y_T \): Observations \(\in \mathbb{R}^{d'} \)
- \(P(X_1) \): Prior belief about location at time 1
- \(P(X_{t+1} | X_t) \): “Motion model”
 - How do I expect my target to move in the environment?
 \[
 X_{t+1} = FX_t + \varepsilon_t \text{ where } \varepsilon_t \in \mathcal{N}(0, \Sigma_x)
 \]
- \(P(Y_t | X_t) \): “Sensor model”
 - What do I observe if target is at location \(X_t \)?
 \[
 Y_t = HX_t + \eta_t \text{ where } \eta_t \in \mathcal{N}(0, \Sigma_y)
 \]
Bayesian filtering in KFs (1D)

- Start with $P(X_1)$
- At time t
 - Assume we have $P(X_t \mid y_{1:t-1})$
 - Conditioning: $P(X_t \mid y_{1:t})$

\[
P(X_t \mid y_{1:t}) = \frac{1}{Z} \cdot P(X_t \mid y_{1:t-1}) P(y_t \mid X_t)
\]

- Prediction: $P(X_{t+1} \mid y_{1:t})$
\[
P(X_{t+1} \mid y_{1:t}) = \int P(X_{t+1} \mid X_t) P(X_t \mid y_{1:t}) \, dX_t
\]
Example: Simple random walk

- **Transition / motion model**
 \[P(x_{t+1} \mid x_t) = \mathcal{N}(x_t, \sigma_x^2) \]
 \[x_{t+1} = x_t + \epsilon_t \quad , \quad \epsilon_t \sim \mathcal{N}(0, \sigma_x^2) \]

- **Sensor model**
 \[P(y_t \mid x_t) = \mathcal{N}(x_t, \sigma_y^2) \]
 \[y_t = x_t + \eta_t \quad , \quad \eta_t \sim \mathcal{N}(0, \sigma_y^2) \]

- **State at time t:**
 \[P(x_t \mid y_{1:t}) = \mathcal{N}(\mu_t, \sigma_t^2) \]
Example: Bayesian filtering in KFs

\[\mu_{t+1} = \frac{\sigma_y^2 \mu_t + (\sigma_t^2 + \sigma_x^2) y_{t+1}}{\sigma_t^2 + \sigma_x^2 + \sigma_y^2} \]

\[\sigma_{t+1}^2 = \frac{(\sigma_t^2 + \sigma_x^2) \sigma_y^2}{\sigma_t^2 + \sigma_x^2 + \sigma_y^2} \]

Suppose: \(P(x_t \mid y_{1:t}) = \mathcal{N}(\mu_t, \sigma_t^2) \)
General Kalman update

- Transition model
 \[P(x_{t+1} \mid x_t) = \mathcal{N}(x_{t+1}; Fx_t, \Sigma_x) \]

- Sensor model
 \[P(y_t \mid x_t) = \mathcal{N}(y_t; Hx_t, \Sigma_y) \]

- Kalman Update:
 \[\mu_{t+1} = F\mu_t + K_{t+1}(y_{t+1} - HF\mu_t) \]
 \[\Sigma_{t+1} = (I - K_{t+1})(F\Sigma_tF^T + \Sigma_x) \]

- Kalman gain:
 \[K_{t+1} = (F\Sigma_tF^T + \Sigma_x)H^T(H(F\Sigma_tF^T + \Sigma_x)H^T + \Sigma_y)^{-1} \]

- Can compute \(\Sigma_t \) and \(K_t \) offline
2D tracking example
Kalman smoothing

2D filtering

2D smoothing

(a) (b)
When KFs fail

KFs assume transition model is **linear**
- Implies that predictive distribution is Gaussian (unimodal)
- Need approximate inference to capture non-linearities!
Factored dynamical models

- So far: HMMs and Kalman filters

What if we have more than one variable at each time step?
- E.g., temperature at different locations, or road conditions in a road network?

⇒ Dynamic Bayesian Networks
Dynamic Bayesian Networks

- At every timestep have a *Bayesian Network*

- Variables at each time step t called a slice S_t
- "Temporal" edges connecting S_{t+1} with $S_t"
Flow of influence in DBNs

$A_1 \perp B_1 \checkmark$

$A_2 \perp B_2 \times$

$A_2 \perp C_2 \checkmark$

$A_3 \perp C_3 \times$
Inference in DBNs?

DBN

- \(A_1 \) → \(A_2 \)
- \(B_1 \) → \(B_2 \)
- \(C_1 \) → \(C_2 \)
- \(D_1 \) → \(D_2 \)

Marginals at time 2

- \(A_2 \)
- \(B_2 \)
- \(C_2 \)
- \(D_2 \)

Need approximate inference!
Particle filtering

- Very useful approximate inference technique for dynamical models
 - Nonlinear Kalman filters
 - Dynamic Bayesian networks

- **Basic idea:** Approximate the posterior at each time by samples (particles), which are propagated and reweighted over time