Introduction to Artificial Intelligence

Lecture 8 – Logical reasoning

CS/CNS/EE 154
Andreas Krause
Logics in general

- **Logics** are formal languages for representing information such that conclusions can be drawn.
- **Syntax** defines the **sentences** in the language.
- **Semantics** defines the “meaning” of sentences, i.e., the **truth** of a sentence in a **world** (environment state).

Example: Language of arithmetic

\[
\begin{align*}
3 + x & \neq 4 \quad \text{not well-formed} \\
3 + 4 & = 6 \quad \text{well-formed, but false} \\
3 + x & = 6 \quad \text{true in world } \{(x, 3)\} \\
3 + x & = 6 \quad \text{false in world } \{(x, 2)\} \\
3 & = 3 \quad \text{true in all worlds}
\end{align*}
\]
Models

- Logicians think in terms of models
 - Formally structured worlds w.r.t. which truth can be evaluated

We say m is a model of a sentence α if α is true in m

$\alpha \equiv (x + 2 = 5)$ is true in model $m = \{(x, 3)\}$

$M(\alpha)$ is the set of all models of α

$\alpha \equiv (x + 2 = y)$ $M(\alpha) = \{\{(x, 0), (y, 2)\}, \{(x, 3), (y, 5)\}, \ldots\}$

Then $KB \models \alpha$ if and only if

$M(KB) \subseteq M(\alpha)$
$KB = \text{wumpus-world rules} + \text{observations}$
$KB = \text{wumpus-world rules + observations}$

$\alpha_1 = "[1,2] \text{ is safe}"$, $KB \models \alpha_1$
Propositional logic: Syntax

Simplest example of a logic; illustrates basic ideas

Propositional symbols are sentences
If S is a sentence, $\neg S$ is a sentence (negation)
If S_1 and S_2 are sentences, $S_1 \land S_2$ is a sentence (conjunction)
If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence (disjunction)
Notation shorthand:
- $S_1 \implies S_2$ for $\neg S_1 \lor S_2$ (implication)
- $S_1 \iff S_2$ for $(S_1 \implies S_2) \land (S_2 \implies S_1)$ (biconditional)
Propositional logic: Semantics

Each **model** specifies *true* or *false* for each proposition symbol

E.g.

\[P_{1,2} \quad P_{2,2} \quad P_{3,1} \]
\[\text{false} \quad \text{true} \quad \text{false} \]

Rules for evaluating truth with respect to a model \(m \):

\[\neg S \quad \text{is true iff} \quad S \text{ is false} \]

\[S_1 \land S_2 \quad \text{is true iff} \quad S_1 \text{ is true and } S_2 \text{ is true} \]

\[S_1 \lor S_2 \quad \text{is true iff} \quad S_1 \text{ is true or } S_2 \text{ is true} \]

Simple recursive process evaluates an arbitrary sentence, e.g.,

\[\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) \]
Wumpus world in prop. logic

Let $P_{i,j}$ be true if there is a pit in $[i, j]$.
Let $B_{i,j}$ be true if there is a breeze in $[i, j]$.

$$
\mathcal{KB} = \left\{ \neg P_{1,1}, \neg B_{1,1}, B_{2,1} \right\}
$$

$\mathcal{KB} \equiv \neg P_{1,1} \wedge \neg B_{1,1} \wedge B_{2,1}$

"Pits cause breezes in adjacent squares"

$$
B_{1,1} \iff (P_{1,2} \vee P_{2,1})
$$

$$
B_{2,1} \iff (P_{1,1} \vee P_{2,2} \vee P_{3,1})
$$
Two main classes of methods for proving $KB \models \alpha$

Model checking
- Truth table enumeration (always exponential in n)
- Better: CSP (e.g., improved backtracking such as DPLL)
 Check whether $(KB \land \neg \alpha)$ is unsatisfiable

Proof using inference
- Apply sequence of inference rules (syntactic manipulations)
- Can use inference rules in a standard search algorithm
Logical inference

- **Inference**: procedure i for deducing (proving) sentences from knowledge base.

- We say $KB \vdash_i \alpha$ if α can be inferred from KB using inference procedure i.

- Inference i is called
 - **Sound** if whenever $KB \vdash_i \alpha$ then also $KB \models \alpha$.
 - **Complete** if whenever $KB \models \alpha$ then also $KB \vdash_i \alpha$.

- Thus, a sound and complete inference procedure *correctly* answers *any* question whose answer can be inferred from KB.
Resolution

- Assumes sentences in Conjunctive Normal Form (CNF)
 - This is no restriction (Tseitin transformation)
 - Example: \((P_{i1} \lor \neg B_{i2}) \land (B_{i2} \lor P_{i1} \lor P_{22}) \land \ldots\)

- Resolution inference rule

\[
\begin{array}{c}
\ell_1 \lor \cdots \lor \ell_k, \quad m_1 \lor \cdots \lor m_n \\
\ell_1 \lor \cdots \lor \ell_{i-1} \lor \ell_{i+1} \lor \ell_k \lor m_1 \lor m_{j-1} \lor m_{j+1} \cdots \lor m_n
\end{array}
\]

- Sound and complete for propositional logic!

- Example:

\[
\begin{array}{c}
\neg R \lor W, \quad \text{Wet Lawn} \Rightarrow \text{Slippery}
\end{array}
\]

\[
\begin{array}{c}
\neg R \lor W, \quad \text{Wet Lawn} \Rightarrow \text{Slippery}
\end{array}
\]

\[
\begin{array}{c}
R \Rightarrow \text{Wet Lawn}, \quad \text{Wet Lawn} \Rightarrow \text{Slippery}
\end{array}
\]

\[
\begin{array}{c}
\neg R \lor W
\end{array}
\]
Resolution example

\[KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1} \quad \alpha = \neg P_{1,2} \]

Thus, \(KB \vdash \alpha \)
Logical reasoning with resolution

- Resolution is complete
 - Any propositional sentence is entailed if and only if it can be proven by resolution

- BUT: Finding the proof can be difficult!
 - Must search through possible applications of resolution rule
 - Search space exponentially large

- 3CNF SAT is NP complete!
 - Existence of polynomial time algorithm considered unlikely

- Are there special kinds of sentences that are “easy” to prove??
Horn clauses

- Special types of propositional formulae
- A Horn clause is
 - A propositional symbol; or
 - (conjunction of symbols) \(\Rightarrow \) symbol

\[
\begin{align*}
\text{Grades} \land \text{GRE} \land \text{Statement} \land \text{Letter} & \Rightarrow \text{Grad School} \\
\text{Research} & \Rightarrow \text{Letter} \\
\text{SURF} & \Rightarrow \text{Research}
\end{align*}
\]

\[
\begin{align*}
\text{Study} & \Rightarrow \text{GRE} \land \text{Grades} \land \text{Letter} \land \text{NA} \land \text{Horn} \\
& \equiv \neg \text{Study} \lor (\text{GRE} \land \text{Grades}) \\
& \equiv \neg \text{Study} \lor \neg \text{GRE} \lor \neg \text{Grades} \\
& \equiv (\neg \text{Study} \lor \neg \text{GRE}) \land (\neg \text{Study} \lor \neg \text{Grades}) \land \text{Horn Clause}
\end{align*}
\]

\[
\text{Study} \Rightarrow \text{GRE}
\]
Forward and backward chaining

- Inference procedure for special types of KBs, consisting only of Horn clauses

- Modus ponens complete for Horn formulas 😊

\[
\alpha_1, \ldots, \alpha_k, \quad \alpha_1 \land \cdots \land \alpha_k \Rightarrow \beta
\]

- Inference algorithms: forward and backward chaining
Forward chaining

- *Idea:* fire any rule whose premises are satisfied in the *KB*,
 - add its conclusion to the *KB*, until query is found

\[
P \Rightarrow Q \\
L \land M \Rightarrow P \\
B \land L \Rightarrow M \\
A \land P \Rightarrow L \\
A \land B \Rightarrow L \\
A \\
B
\]
Forward chaining example
Proof of completeness

FC derives every atomic sentence that is entailed by KB

1. FC reaches a **fixed point**: no new atomic sentences are derived
2. Consider final state as model m, assigning true/false to symbols
3. Every clause in the original KB is true in m
 \[a_1 \land ... \land a_k \Rightarrow b \]
4. Hence m is a model of KB
5. If $KB \models q$, q is true in every model of KB, including m
Backward chaining

Idea: work backwards from the query Q:

- check if Q is known already, or
- prove by BC all premises of some rule concluding Q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal

1. has already been proved true, or
2. has already failed
Backward chaining example
Forward vs. backward chaining

- FC is **data-driven**, automatic, unconscious processing,
 - e.g., simple model for object recognition, routine decisions

- May do lots of work that is irrelevant to the goal

- BC is **goal-driven**, appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?

- Complexity of BC can be **much less** than linear in size of KB
Summary so far:

- **Logic** = formal language with
 - **Syntax** (what sentences are valid?)
 - **Semantics** (what valid sentences are true?)

- Simple example: **Propositional logic**

- Can infer entailment of sentences using
 - **Model checking** (e.g., Constraint satisfaction)
 - **Logical inference** (should be sound and complete)

- **Inference procedures**
 - **Resolution**: Sound and complete for arbitrary prop. formulas, but exponential search space
 - **Forward-/Backward chaining**: Sound; complete only for *Horn* formulas. Inference in (sub-) linear time!
Issues with propositional Wumpus world

Need “copies” of symbols and sentences for each cell

\[P_{1,1} \text{ is true if there is a pit in } [1,1] \]
\[P_{1,2} \text{ is true if there is a pit in } [1,2] \]
\[\ldots \]
\[P_{n,n} \text{ is true if there is a pit in } [n,n] \]

\[B_{1,1} \text{ is true if there is a breeze in } [1,1] \quad \ldots \]
\[B_{n,n} \text{ is true if there is a breeze in } [n,n] \]
\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}); B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1}); \ldots \]
First order logic (FOL)

- Propositional logic is about simple facts
 - “There is a breeze at location [1,2]”

- First order logic is about facts involving
 - *Objects*: Numbers, people, locations, time instants, ...
 - *Relations*: Alive, IsNextTo, Before, ...
 - *Functions*: MotherOf, BestFriend, SquareRoot, OneMoreThan, ...

- Will be able to say:
 - IsBreeze(x); IsPit(x); IsNextTo(x,y)
 - \(\forall x, y : (IsPit(x) \land IsNextTo(x, y)) \Rightarrow IsBreeze(y) \)
Simple example

About King Richard the Lionheart and his evil brother John

Objects:
- Richard
- John
- Crown

Relations
- Richard and John are brothers
- Richard is a king

Function
- Refer to specific properties of Richard and John, e.g., their head, legs, ...
FOL: Basic syntactic elements

- **Constants**: KingJohn, 1, 2, ..., [1,1], [1,2], ..., [n,n], ...
- **Variables**: x, y, z, ...
- **Predicates**: Brother, ≥, =, ...
- **Functions**: LeftLegOf, MotherOf, Sqrt, ...
- **Connectives**: ∧, ∨, ¬
- **Quantifiers**: ∀, ∃

Constant, predicates and functions are mere *symbols* (i.e., have no meaning on their own)
FOL Syntax: Atomic sentences

A (variable-free) term is a
- constant symbol or
- k-ary function symbol: \(\text{function}(\text{term}_1, \text{term}_2, \ldots, \text{term}_k) \)

Example: \(\text{LeftLegOf(KingJohn)}, \text{IsBreeze([1,2])} \)

An atomic sentence is a predicate symbol applied to terms

Example:
- \(\text{Brother(KingJohn, RichardLionheart)} \)
- \(\text{IsNextTo([1,1],[1,2])} \)
- \(> (\text{Length(LeftLegOf(KingJohn))}, \text{Length(LeftLegOf(RichardLionheart))}) \)
FOL Syntax: Composite sentences

- Composite sentences are
 - Atomic sentences or
 - Composite sentences joined by connectives

Example:

\[\text{BrotherOf(KingJohn, RichardLionheart)} \Rightarrow \text{BrotherOf(RichardLionheart, KingJohn)} \]
Models in FOL

- Much more complicated than in Propositional Logic
- Models contain
 - Set of objects (finite or countable)
 - Set of relations between objects (map obj’s to truth values)
 - Set of functions (map objects to other objects)

and their interpretations:
- Mapping from constant symbols to model objects
- Mapping from predicate symbols to model relations
- Mapping from function symbols to model functions

An atomic sentence \(\text{predicate}(\text{term}_1, \text{term}_2, \ldots, \text{term}_k) \) is true if the objects referred to by \(\text{term}_1, \text{term}_2, \ldots, \text{term}_k \) are in the relation referred to by \(\text{predicate} \)
Models in FOL: Example
Objects: R, J, C, LegR, LegJ, N

Functions: LLO
 - LLO(R) = LegR; LLO(J) = LegJ; LLO(C) = N; LLO(LegR) = N; ...

Relations:
 - B = \{(R, J)\}; OH = \{(C, J)\};
 - K = \{J\}; P = \{R, J\}

Mappings:
 - Richard: R; John: J
 - LeftLegOf: LLO;
 - Brother: B; OnHead(OH)
Specifying known facts is tedious

E.g., need

- \(\neg \text{OnHead}(R, J) \)
- \(\neg \text{OnHead}(\text{LeftLeg1}, J) \)
- \(\neg (R = J) \)
- \(\neg \text{OnHead}(\text{LeftLeg1}, \text{LeftLeg2}) \)
- \(\neg (R = \text{LeftLeg1}) \)
- ...

![Diagram showing relationships between R and J, including on head, brother, and left leg connections.](image-url)
Indeterminate number of objects

Let’s look at all possible models for a language with
- Two constants: R, J
- One binary relation: B
"Database" semantics

- Typically conventions
 - Closed-world: Atomic sentences not in KB are false
 - Unique names: Different constants refer to different objects
 - Domain closure: Only allow model objects that are associated with constant symbols
Quantifiers

- Allow variables in addition to constants
 \[\text{Homework}(x, 154) \]

- Sentences with free variables: \(S(x) \)

- Quantifiers bind free variables
 \[\forall x : S(x) \] is true if \(S(x) \) is true for all instantiations of \(x \)
 (i.e., for each possible object in the model)

 \[\exists x : S(x) \] is true if \(S(x) \) is true for at least one
 instantiation of \(x \) (i.e., for some object)

- Example:

 - All homeworks in 154 are hard
 \[\forall x : (\text{Homework}(x, 154) \Rightarrow \text{Hard}(x)) \]

 - At least one of the 154 homeworks is hard
 \[\exists x : \text{Homework}(x, 154) \land \text{Hard}(x) \]
Properties of quantifiers

- Is $\forall x \; \forall y \; S(x, y)$ the same as $\forall y \; \forall x \; S(x, y)$?

- Is $\exists x \; \exists y \; S(x, y)$ the same as $\exists y \; \exists x \; S(x, y)$?

- Is $\exists x \; \forall y \; S(x, y)$ the same as $\forall y \; \exists x \; S(x, y)$?

 - $\exists x \; \exists y \; \text{Love}(x, y)$ \quad There is someone who loves everyone

 - $\forall y \; \exists x \; \text{Love}(x, y)$ \quad Everybody is loved by someone
De Morgan’s law for quantifiers

Each quantifier can be expressed by the other (they are dual to each other)

\[\forall x \in S(k) \equiv \exists x \in S(k) \]