CMS/CS/EE 144
Networks: Structure and Economics

Administrivia
1) Turn in your add cards :)
2) No class thursday
3) HW2 is due thursday.
 ➔ Your crawler will take time to run...don’t leave it until the last minute!
 ➔ Remember to be polite with your crawlers!
4) Office hours
 ➔ Adam: Monday 3-4pm
 ➔ TAs, 7-9pm today and tomorrow.
5) HW1 will be graded soon. Grades will go on moodle...
6) **QUIZ 1 IS TODAY**
So far:
Four “universal” properties of networks
1) A “giant” connected component
2) Small diameter
3) Heavy-tailed degree distribution
4) High clustering coefficient

We’re trying to understand:
Why are these properties “universal”?
Last time:
Why is there a giant component?
$G(n,p)$
$p(n) = 0$

$p(n) = \frac{c}{n}$

$p(n) = \frac{\log n}{n}$

$p(n) = c$

$p(n) = \frac{c}{n^2}$

$p(n) = 1$
This time:
Why is the degree distribution heavy-tailed?
Are heavy tails actually “normal”?
From a few years ago...

“The top 1% of a population owns 40% of the wealth; the top 2% of Twitter users send 60% of the tweets. These figures are always reported as shocking [...] as if anything but a bell curve were an aberration, but Pareto distributions pop up all over. Regarding them as anomalies prevents us from thinking clearly about the world.”
Our plan:
Today ➔ Heavy-tails in general
Next time ➔ Heavy-tails in networks
What is a heavy-tailed distribution?
So far to us → linear on a log-log scale
What is a heavy-tailed distribution?
So far to us → linear on a log-log scale
More generally → a distribution with a “tail” that is “heavier” than an Exponential
What is a heavy-tailed distribution?

So far to us \rightarrow linear on a log-log scale

More generally \rightarrow a distribution with a “tail” that is “heavier” than an Exponential

$\Pr(X > x) = e^{-\mu x}$
What is a heavy-tailed distribution?

So far to us \rightarrow linear on a log-log scale

More generally \rightarrow a distribution with a “tail” that is “heavier” than an Exponential

Definition: A random variable is heavy-tailed iff $\forall s > 0,$

$$\lim_{x \to \infty} e^{sx} \Pr(X > x) = \infty$$

But things get confusing: fat tail, long tail, power law, ...
Canonical Example: The Pareto Distribution a.k.a. the “power-law” distribution

\[\Pr(X > x) = \bar{F}(x) = \left(\frac{x_{\text{min}}}{x} \right)^\alpha \text{ for } x \geq x_{\text{min}} \]

density: \[f(x) = \frac{\alpha x_{\text{min}}^\alpha}{x^{\alpha+1}} \]

Extremely high variability: \(Var[X] = \infty \text{ if } \alpha < 2! \)

Linear on a log-log ccdf plot.
Canonical Example: The Pareto Distribution a.k.a. the “power-law” distribution

Many other examples: LogNormal, Weibull, Zipf, Cauchy, Student’s t, Frechet, ...

\[X: \log X \sim \text{Normal} \]
\[\text{Var}[X] = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2} \]
Canonical Example: The Pareto Distribution a.k.a. the “power-law” distribution

Many other examples: LogNormal, Weibull, Zipf, Cauchy, Student’s t, Frechet, ...

\[X: \log X \sim \text{Normal} \]
Canonical Example: The Pareto Distribution a.k.a. the “power-law” distribution

Many other examples: LogNormal, Weibull, Zipf, Cauchy, Student’s t, Frechet, ...

\[F(x) = e^{-\frac{x}{\lambda^k}} \]

- \(k = 1 \): Exponential
- \(k = 2 \): Rayleigh
- \(k = 3.4 \): Approx Normal
- \(k \to \infty \): Deterministic

- \(k < 1 \): Heavy – tailed
Canonical Example: The Pareto Distribution a.k.a. the “power-law” distribution

Many other examples: LogNormal, Weibull, Zipf, Cauchy, Student’s t, Frechet, ...

\[
\bar{F}(x) = e^{-(x/\lambda)^k}
\]

Weibull(1,1)

Weibull(0.5,1)
Canonical Example: The Pareto Distribution a.k.a. the “power-law” distribution

Many other examples: LogNormal, Weibull, Zipf, Cauchy, Student’s t, Frechet, ...

\[F(x) = e^{-(x/\lambda)^k} \]
What is a heavy-tailed distribution?

So far to us \rightarrow linear on a log-log scale

More generally \rightarrow a distribution with a “tail” that is “heavier” than an Exponential

Definition: A random variable is heavy-tailed iff $\forall s > 0$,
$$\lim_{x \to \infty} e^{sx} \Pr(X > x) = \infty$$
Heavy-tailed phenomena are treated as something **MYSTERIOUS, Surprising, & Controversial**

Our intuition is flawed because intro probability classes focus on light-tailed distributions.

Simple, appealing statistical approaches have BIG problems.
Heavy-tailed phenomena are treated as something **MYSTERIOUS, SURPRISING, & CONTROVERSIAL**

On Power-Law Relationships of the Internet Topology

Michalis Faloutsos
U.C. Riverside
Dept. of Comp. Science
michalis@cs.ucr.edu

Petros Faloutsos
U. of Toronto
Dept. of Comp. Science
pfal@cs.toronto.edu

Christos Faloutsos
Carnegie Mellon Univ.
Dept. of Comp. Science
christos@cs.cmu.edu

1999 Sigcomm paper – 4500+ citations!

On the Bias of Traceroute Sampling

or, Power-law Degree Distributions in Regular Graphs

Dimitris Achlioptas
Microsoft Research
Redmond, WA 98052
dimitris@msr.com
David Kempe
Department of Computer Science
University of Southern California
Los Angeles, CA 90089
dkempe@usc.edu

Aaron Clauset
Department of Computer Science
University of New Mexico
Albuquerque, NM 87131
clauset@cs.unm.edu

Similar stories in electricity nets, citation nets, ...

Understanding Internet Topology: Principles, Models, and Validation

David Alderson, *Member, IEEE*, Lun Li, *Student Member, IEEE*, Walter Willinger, *Fellow, IEEE*, and John C. Doyle, *Member, IEEE*
Heavy-tailed phenomena are treated as something mysterious, surprising, and controversial.

1. Properties
2. Emergence
3. Identification
Heavy-tailed distributions have many strange & beautiful properties

- The “Pareto principle”: 80% of the wealth owned by 20% of the population, etc.
- Infinite variance or even infinite mean
- Events that are much larger than the mean happen “frequently”

These are driven by 3 “defining” properties

1) Scale invariance
2) The “catastrophe principle”
3) The residual life ”blows up”
Scale invariance
Scale invariance

F is scale invariant if there exists an x_0 and a g such that

$$F(\lambda x) = g(\lambda)F(x)$$

for all λ, x such that $\lambda x \geq x_0$.

“change of scale”
Scale invariance

\(F \) is scale invariant if there exists an \(x_0 \) and a \(g \) such that
\[
\bar{F}(\lambda x) = g(\lambda) \bar{F}(x)
\]
for all \(\lambda, x \) such that \(\lambda x \geq x_0 \).

Theorem: A distribution is scale invariant if and only if it is Pareto.

Example: Pareto distributions

\[
\bar{F}(\lambda x) = \left(\frac{x_{\text{min}}}{\lambda x} \right)^{\alpha} = \bar{F}(x) \left(\frac{1}{\lambda} \right)^{\alpha}
\]
Scale invariance

F is scale invariant if there exists an x_0 and a g such that

$$F(\lambda x) = g(\lambda)F(x)$$

for all λ, x such that $\lambda x \geq x_0$.

Asymptotic scale invariance

F is asymptotically scale invariant if there exists a continuous, finite g such that

$$\lim_{x \to \infty} \frac{F(\lambda x)}{F(x)} = g(\lambda)$$

for all λ.
Example: Regularly varying distributions

\(F \) is regularly varying if \(F(x) = x^{-\rho} L(x) \), where \(L(x) \) is slowly varying, i.e., \(\lim_{x \to \infty} \frac{L(xy)}{L(x)} = 1 \) for all \(y > 0 \).

Theorem: A distribution is asymptotically scale invariant iff it is regularly varying.

Asymptotic scale invariance

\(F \) is asymptotically scale invariant if there exists a continuous, finite \(g \) such that

\[
\lim_{x \to \infty} \frac{F(\lambda x)}{F(x)} = g(\lambda) \text{ for all } \lambda.
\]
Example: Regularly varying distributions

F is regularly varying if $\bar{F}(x) = x^{-\rho} L(x)$, where $L(x)$ is slowly varying, i.e., $\lim_{x \to \infty} \frac{L(xy)}{L(x)} = 1$ for all $y > 0$.

Regularly varying distributions are extremely useful. They basically behave like Pareto distributions with respect to the tail:

→ “Karamata” theorems
→ “Tauberian” theorems
Heavy-tailed distributions have many strange & beautiful properties

• The “Pareto principle”: 80% of the wealth owned by 20% of the population, etc.
• Infinite variance or even infinite mean
• Events that are much larger than the mean happen “frequently”

These are driven by 3 “defining” properties

1) Scale invariance
2) The “catastrophe principle”
3) The residual life ”blows up”
A thought experiment

Suppose that during lecture I polled 50 students about their heights and the number of twitter followers they have...

The sum of the heights was ~300 feet.
The sum of the number of twitter followers was 1,025,000

What led to these large values?
A thought experiment

Suppose that during lecture I polled 50 students about their heights and the number of twitter followers they have...

The sum of the heights was ~300 feet. The sum of the number of twitter followers was 1,025,000

A bunch of people were probably just over 6’ tall (Maybe the basketball teams were in the class.) “Conspiracy principle”

One person was probably a twitter celebrity and had ~1 million followers. “Catastrophe principle”
Example

Consider $X_1 + X_2$ i.i.d Weibull.

Given $X_1 + X_2 = d$, what is the marginal density of X_1?

- Light-tailed Weibull
- Heavy-tailed Weibull
- Exponential

"Conspiracy principle"
"Catastrophe principle"
"Catastrophe principle"

Pr(max(X_1, ..., X_n) > t) \sim Pr(X_1 + \cdots + X_n > t)

\Rightarrow Pr(max(X_1, ..., X_n) > t | X_1 + \cdots + X_n > t) \to 1

"Conspiracy principle"

Pr(max(X_1, ..., X_n) > t) = o(Pr(X_1 + \cdots + X_n > t))
"Catastrophe principle"

Pr(max(X₁, ..., Xₙ) > t) ~ Pr(X₁ + ... + Xₙ > t)
⇒ Pr(max(X₁, ..., Xₙ) > t | X₁ + ... + Xₙ > t) → 1

Extremely useful for random walks, queues, etc.

"Principle of a single big jump"
Subexponential distributions

F is subexponential if for i.i.d. X_i, $\Pr(X_1 + \cdots + X_n > t) \sim n\Pr(X_1 > t)$

"Catastrophe principle"

$\Pr(\max(X_1, \ldots, X_n) > t) \sim \Pr(X_1 + \cdots + X_n > t)$

$\Rightarrow \Pr(\max(X_1, \ldots, X_n) > t | X_1 + \cdots + X_n > t) \rightarrow 1$
Subexponential distributions

F is subexponential if for i.i.d. X_i, $\Pr(X_1 + \cdots + X_n > t) \sim n \Pr(X_1 > t)$
1) Turn in your add cards :)
2) No class Thursday
3) HW2 is due Thursday.
 - Your crawler will take time to run...don’t leave it until the last minute!
 - Remember to be polite with your crawlers!
4) Office hours
 - Adam: Mondays 3-4pm
 - TAs, 7-9pm today and tomorrow.
5) HW1 will be graded soon. Grades will go on moodle...
6) ***QUIZ 1 IS TODAY***
So far:
Four “universal” properties of networks
1) A “giant” connected component
2) Small diameter
3) Heavy-tailed degree distribution
4) High clustering coefficient

We’re trying to understand:
Why are these properties “universal”?
This time:
Why is the degree distribution heavy-tailed?
Are heavy tails actually “normal”?
From a few years ago...

“The top 1% of a population owns 40% of the wealth; the top 2% of Twitter users send 60% of the tweets. These figures are always reported as shocking [...] as if anything but a bell curve were an aberration, but Pareto distributions pop up all over. Regarding them as anomalies prevents us from thinking clearly about the world.”
Our plan:
1) Heavy-tails in general
2) Heavy-tails in networks
What is a heavy-tailed distribution?

A distribution with a “tail” that is “heavier” than an Exponential

Definition: A random variable is heavy-tailed iff $\forall s > 0$,
\[
\lim_{x \to \infty} e^{sx} \Pr(X > x) = \infty
\]
Heavy-tailed phenomena are treated as something **MYSTERIOUS, Surprising, & Controversial**

Our intuition is flawed because intro probability classes focus on light-tailed distributions

Simple, appealing statistical approaches have BIG problems
Heavy-tailed phenomena are treated as something **Mysterious, Surprising, & Controversial**

1. Properties
2. Emergence
3. Identification
Heavy-tailed distributions have many strange & beautiful properties

- The “Pareto principle”: 80% of the wealth owned by 20% of the population, etc.
- Infinite variance or even infinite mean
- Events that are much larger than the mean happen “frequently”

These are driven by 3 “defining” properties

1) Scale invariance
2) The “catastrophe principle”
3) The residual life ”blows up”
A thought experiment

What happens to the expected remaining waiting time as we wait
...for a table at a restaurant?
...for a bus?
...for the response to an email?

The remaining wait drops as you wait

If you don’t get it quickly, you never will...
The distribution of residual life

The distribution of remaining waiting time given you have already waited x time is $R_x(t) = \frac{F(x+t)}{F(x)}$.

Examples:

Exponential: $R_x(t) = \frac{e^{-\mu(x+t)}}{e^{-\mu x}} = e^{-\mu t} \quad \rightarrow \quad \text{“memoryless”}$

Pareto: $R_x(t) = \left(\frac{x_{\min}}{x+t}\right)^\alpha \cdot \left(\frac{x_{\min}}{x}\right)^\alpha = \left(1 + \frac{t}{x}\right)^{-\alpha} \quad \rightarrow \quad \text{Increasing in } x$
The distribution of residual life

The distribution of remaining waiting time given you have already waited x time is $R_x(t) = \frac{F(x+t)}{F(x)}$.

Mean residual life

$$m(x) = E[X - x | X > x] = \int R_x(t) \, dt$$

Hazard rate

$$q(x) = \frac{f(x)}{F(x)} = R'_x(0)$$

Heavy-tailed distributions “tend” to have decreasing hazard rates & increasing mean residual lives.

Light-tailed distributions “tend” to have increasing hazard rates & decreasing mean residual lives.
What happens to the expected remaining waiting time as we wait
 ...for a table at a restaurant?
 ...for a bus?
 ...for the response to an email?

BUT: not all heavy-tailed distributions have DHR / IMRL
some light-tailed distributions are DHR / IMRL

Heavy-tailed distributions “tend” to have decreasing hazard rates & increasing mean residual lives
Light-tailed distributions “tend” to have increasing hazard rates & decreasing mean residual lives
Long-tailed distributions

F is long-tailed if $\lim_{x \to \infty} \frac{R_x(t)}{\bar{F}(x)} = \lim_{x \to \infty} \frac{\bar{F}(x+t)}{\bar{F}(x)} = 1$ for all t

BUT: not all heavy-tailed distributions have DHR / IMRL

some light-tailed distributions are DHR / IMRL

Heavy-tailed distributions “tend” to have decreasing hazard rates & increasing mean residual lives

Light-tailed distributions “tend” to have increasing hazard rates & decreasing mean residual lives
Long-tailed distributions

F is long-tailed if

$$
\lim_{x \to \infty} \frac{\bar{R}_x(t)}{F(x)} = \lim_{x \to \infty} \frac{F(x+t)}{F(x)} = 1 \text{ for all } t
$$
Long-tailed distributions

Regularly Varying

Pareto

Subexponential

Weibull

LogNormal

Heavy-tailed → Difficult to work with in general
Long-tailed distributions

Asymptotically scale invariant \rightarrow Useful analytic properties

Heavy-tailed \rightarrow Difficult to work with in general

- Pareto
- Weibull
- LogNormal
- Regularly Varying
- Subexponential
Long-tailed distributions

Catastrophe principle

Useful for studying random walks

Heavy-tailed

Difficult to work with in general

Pareto

Regularly Varying

Subexponential

Weibull

LogNormal
Long-tailed distributions

- Pareto
- Subexponential
- Weibull
- LogNormal
- Regularly Varying

Residual life “blows up” & Useful for studying extremes

Heavy-tailed & Difficult to work with in general
Heavy-tailed phenomena are treated as something mysterious, surprising, & controversial.

1. Properties
2. Emergence
3. Identification
We’ve all been taught that the **Normal is “normal”**
...because of the **Central Limit Theorem**

But the Central Limit Theorem we’re taught is not complete!
A quick review

Consider i.i.d. X_i. How does $\sum_{i=1}^{n} X_i$ grow?

Law of Large Numbers (LLN): $\frac{1}{n} \sum_{i=1}^{n} X_i \to E[X_i]$ a.s. when $E[X_i] < \infty$

$\sum_{i=1}^{n} X_i = nE[X_i] + o(n)$
A quick review

Consider i.i.d. X_i. How does $\sum_{i=1}^{n} X_i$ grow?

Central Limit Theorem (CLT):

$$\frac{1}{\sqrt{n}} \left(\sum_{i=1}^{n} X_i - nE[X_i] \right) \to Z \sim \text{Normal}(0, \sigma^2)$$

when $\text{Var}[X_i] = \sigma^2 < \infty$.

$$\sum_{i=1}^{n} X_i = nE[X_i] + \sqrt{n}Z + o(\sqrt{n})$$

$n = 300$
A quick review

Consider i.i.d. X_i. How does $\sum_{i=1}^{n} X_i$ grow?

Central Limit Theorem (CLT):

$$\frac{1}{\sqrt{n}} \left(\sum_{i=1}^{n} X_i - nE[X_i] \right) \rightarrow Z \sim \text{Normal}(0, \sigma^2)$$

when $\text{Var}[X_i] = \sigma^2 < \infty$.

$$\sum_{i=1}^{n} X_i = nE[X_i] + \sqrt{n}Z + o(\sqrt{n})$$

Two key assumptions

$n = 300$
A quick review

Consider i.i.d. X_i. How does $\sum_{i=1}^{n} X_i$ grow?

Central Limit Theorem (CLT):

$$ \frac{1}{\sqrt{n}} \left(\sum_{i=1}^{n} X_i - nE[X_i] \right) \rightarrow Z \sim \text{Normal}(0, \sigma^2) $$

when $\text{Var}[X_i] = \sigma^2 < \infty$.

$$ \sum_{i=1}^{n} X_i = nE[X_i] + \sqrt{n}Z + o(\sqrt{n}) $$

What if $\text{Var}[X_i] = \infty$?

$\sigma_i = \frac{1}{n} X_i = nE[X_i] + \sqrt{n}Z + o(\sqrt{n})$

$n = 300$
A quick review

Consider i.i.d. \(X_i \). How does \(\sum_{i=1}^{n} X_i \) grow?

Central Limit Theorem (CLT):

\[
\frac{1}{\sqrt{n}} \left(\sum_{i=1}^{n} X_i - nE[X_i] \right) \rightarrow Z \sim \text{Normal}(0, \sigma^2)
\]

when \(\text{Var}[X_i] = \sigma^2 < \infty \).

\[
\sum_{i=1}^{n} X_i = nE[X_i] + \sqrt{n}Z + o(\sqrt{n})
\]

What if \(\text{Var}[X_i] = \infty \)?

\[
\sum_{i=1}^{n} X_i
\]
A quick review

Consider i.i.d. X_i. How does $\sum_{i=1}^{n} X_i$ grow?

Central Limit Theorem (CLT): \[\frac{1}{\sqrt{n}} \left(\sum_{i=1}^{n} X_i - nE[X_i] \right) \rightarrow Z \sim \text{Normal}(0, \sigma^2) \]
when $\text{Var}[X_i] = \sigma^2 < \infty$.

The Generalized Central Limit Theorem (GCLT):

\[\frac{1}{a_n} \left(\sum_{i=1}^{n} X_i - b_n \right) \rightarrow Z \begin{cases} \text{Normal}(0, \sigma^2) \\ \text{Regularly varying } \alpha \in (0,2) \end{cases} \]

$\sum_{i=1}^{n} X_i = nE[X_i] + n^{1/\alpha}Z + o(n^{1/\alpha})$

What if $\text{Var}[X_i] = \infty$?
A quick review

Consider i.i.d. X_i. How does $\sum_{i=1}^{n} X_i$ grow?

Central Limit Theorem (CLT):

$$\frac{1}{\sqrt{n}} \left(\sum_{i=1}^{n} X_i - nE[X_i] \right) \rightarrow Z \sim Normal(0, \sigma^2)$$

when $\text{Var}[X_i] = \sigma^2 < \infty$.

What if $\text{Var}[X_i] = \infty$?

The Generalized Central Limit Theorem (GCLT):

$$\frac{1}{a_n} \left(\sum_{i=1}^{n} X_i - b_n \right) \rightarrow Z \begin{cases} \text{Normal}(0, \sigma^2) \\ \text{Regularly varying } \alpha \in (0,2) \end{cases}$$

Finite variance \rightarrow Light-tailed (Normal)

Infinite variance \rightarrow Heavy-tailed (power law)
Returning to our original question...

Consider i.i.d. X_i. How does $\sum_{i=1}^{n} X_i$ grow?

Either the Normal distribution OR a power-law distribution can emerge!
Returning to our original question...

Consider i.i.d. X_i. How does $\sum_{i=1}^{n} X_i$ grow?

Either the Normal distribution OR a power-law distribution can emerge!

...but this isn’t the only question one can ask about $\sum_{i=1}^{n} X_i$.

What is the distribution of the “ruin” time?

The ruin time is always heavy-tailed!
Consider a symmetric 1-D random walk

The distribution of ruin time satisfies $\Pr(T > x) \sim \frac{\sqrt{2/\pi}}{\sqrt{x}}$

What is the distribution of the “ruin” time?

The ruin time is always heavy-tailed!
We’ve all been taught that the Normal is “normal” …because of the Central Limit Theorem

Heavy-tails are more “normal” than the Normal!

1. Additive Processes
2. Multiplicative Processes
3. Extremal Processes
A simple multiplicative process

\[P_n = Y_1 \cdot Y_2 \cdot \ldots \cdot Y_n, \text{ where } Y_i \text{ are i.i.d. and positive} \]

Ex: incomes, populations, fragmentation, twitter popularity...

"Rich get richer"
Multiplicative processes almost always lead to heavy tails

An example:

\[Y_1, Y_2 \sim \text{Exponential} (\mu) \]

\[\Pr(Y_1 \cdot Y_2 > x) \geq \Pr(Y_1 > \sqrt{x})^2 \]

\[= e^{-2\mu \sqrt{x}} \]

\[\Rightarrow Y_1 \cdot Y_2 \text{ is heavy-tailed!} \]
Multiplicative processes almost always lead to heavy tails

\[P_n = Y_1 \cdot Y_2 \cdot \ldots \cdot Y_n \]

\[\log P_n = \log Y_1 + \log Y_2 + \cdots + \log Y_n \]

Central Limit Theorem

\[\log P_n = n E[X_i] + \sqrt{n}Z + o(\sqrt{n}), \text{ where } Z \sim \text{Normal}(0, \sigma^2) \]

when \(\text{Var}[X_i] = \sigma^2 < \infty \).

\[\left(\frac{Y_1 \cdot Y_2 \cdot \ldots \cdot Y_n}{\mu} \right)^{1/\sqrt{n}} \rightarrow H \sim \text{LogNormal}(0, \sigma^2) \]

where \(\mu = e^{E[\log Y_i]} \)

and \(\text{Var}[\log Y_i] = \sigma^2 < \infty \).
Multiplicative central limit theorem

\[
\left(\frac{Y_1 \cdot Y_2 \cdot \ldots \cdot Y_n}{\mu} \right)^{1/\sqrt{n}} \quad \rightarrow \quad H \sim \text{LogNormal}(0, \sigma^2)
\]

where \(\mu = e^{E[\log Y_i]} \)

and \(\text{Var}[\log Y_i] = \sigma^2 < \infty \).
Multiplicative central limit theorem

\[
\left(\frac{Y_1 \cdot Y_2 \cdot \ldots \cdot Y_n}{\mu} \right)^{1/\sqrt{n}} \rightarrow H \sim \text{LogNormal}(0, \sigma^2)
\]

where \(\mu = e^{\text{Var}[\log Y_i]} \) and \(\text{Var}[\log Y_i] = \sigma^2 < \infty \).

Satisfied by all distributions with finite mean and many with infinite mean.
A simple multiplicative process

\[P_n = Y_1 \cdot Y_2 \cdot \ldots \cdot Y_n, \text{ where } Y_i \text{ are i.i.d. and positive} \]

Ex: incomes, populations, fragmentation, twitter popularity...

"Rich get richer"

Heavy-tails

LogNormals emerge
A simple multiplicative process

\[P_n = Y_1 \cdot Y_2 \cdot \ldots \cdot Y_n, \text{ where } Y_i \text{ are i.i.d. and positive} \]

Ex: incomes, populations, fragmentation, twitter popularity...

Multiplicative process with a lower barrier

\[P_n = \min(P_{n-1} Y_n, \epsilon) \]

Multiplicative process with noise

\[P_n = P_{n-1} Y_n + Q_n \]

Distributions that are approximately power-law emerge
A simple multiplicative process

\[P_n = Y_1 \cdot Y_2 \cdot \ldots \cdot Y_n, \text{ where } Y_i \text{ are i.i.d. and positive} \]

Ex: incomes, populations, fragmentation, twitter popularity...

Multiplicative process with a lower barrier

\[P_n = \min(P_{n-1}Y_n, \epsilon) \]

Under minor technical conditions, \(P_n \to F \) such that

\[\lim_{x \to \infty} \frac{\log F(x)}{\log x} = s^* \text{ where } s^* = \sup(s \geq 0 | E[Y_1^s] \leq 1) \]

“Nearly” regularly varying
We’ve all been taught that the Normal is “normal” ...because of the Central Limit Theorem

Heavy-tails are more “normal” than the Normal!

1. Additive Processes
2. Multiplicative Processes
3. Extremal Processes
A simple extremal process

\[M_n = \max(X_1, X_2, \ldots, X_n) \]

Ex: engineering for floods, earthquakes, etc. Progression of world records

“Extreme value theory”
A simple example

\(X_i \sim \text{Exponential}(\mu) \)

\[
\Pr(\max(X_1, \ldots, X_n) < a_n t + b_n) = F(a_n t + b_n)^n
\]

\[
= (1 - e^{-a_n t - b_n})^n
\]

\[
= (1 - e^{-t - \log n})^n
\]

\(a_n = 1, b_n = \log n \)

\[
\rightarrow e^{-e^{-t}}: \text{Gumbel distribution}
\]

\(M_n = \max(X_1, X_2, \ldots, X_n) \)

How does \(M_n \) scale?

\[
\frac{M_n - b_n}{a_n}
\]
How does M_n scale?

\[M_n = \max(X_1, X_2, \ldots, X_n) \]

\[\frac{M_n - b_n}{a_n} \]

"Extremal Central Limit Theorem"

\[\frac{M_n - b_n}{a_n} \rightarrow Z \]

\{ Frechet, Weibull, Gumbel \}

\[\rightarrow \text{Heavy-tailed} \]

\[\rightarrow \text{Heavy or light-tailed} \]

\[\rightarrow \text{Light-tailed} \]
$M_n = \max(X_1, X_2, \ldots, X_n)$

How does M_n scale?

$\frac{M_n - b_n}{a_n} \rightarrow Z$

“Extremal Central Limit Theorem”

- Frechet
- Weibull
- Gumbel

iff X_i are regularly varying

→ e.g. when X_i are Uniform

→ e.g. when X_i are LogNormal
A simple extremal process

\[M_n = \max(X_1, X_2, \ldots, X_n) \]

Ex: engineering for floods, earthquakes, etc. Progression of world records

Either heavy-tailed or light-tailed distributions can emerge as \(n \to \infty \)

...but this isn’t the only question one can ask about \(M_n \).

What is the distribution of the time until a new “record” is set?

The time until a record is always heavy-tailed!
The time until a record is always heavy-tailed!

\[T_k: \text{Time between } k \& k + 1^{st} \text{ record} \]

\[\Pr(T_k > n) \sim \frac{2^{k-1}}{n} \]

What is the distribution of the time until a new “record” is set?

The time until a record is always heavy-tailed!
We’ve all been taught that the Normal is “normal”…because of the Central Limit Theorem.

Heavy-tails are more “normal” than the Normal!

1. Additive Processes
2. Multiplicative Processes
3. Extremal Processes
Heavy-tailed phenomena are treated as something **Mysterious, Surprising, & Controversial**

1. Properties

2. Emergence

3. Identification

We’ve all been taught that the Normal is “normal” because of the Central Limit Theorem, BUT Heavy-tails are more “normal” than the Normal!
Heavy-tailed phenomena are treated as something

MYSTERIOUS, Surprising, & Controversial

1999 Sigcomm paper – 4500+ citations!

On Power-Law Relationships of the Internet Topology

Michalis Faloutsos
U.C. Riverside
Dept. of Comp. Science
michalis@cs.ucr.edu

Petros Faloutsos
U. of Toronto
Dept. of Comp. Science
pfal@cs.toronto.edu

Christos Faloutsos *
Carnegie Mellon Univ.
Dept. of Comp. Science
christos@cs.cmu.edu

On the Bias of Traceroute Sampling

*
By Power-law Degree Distributions in Regular Graphs

Aaron Clauset
Department of Computer Science
University of New Mexico
Albuquerque, NM 87131
clauser@cs.unm.edu

David Eppstein
Computer Science Dept.
University of California, Irvine
Irvine, CA 92697
eddy@cs.uci.edu

Understanding Internet Topology: Principles, Models, and Validation

David Alderson, Member, IEEE, Lun Li, Student Member, IEEE, Walter Willinger, Fellow, IEEE, and John C. Doyle, Member, IEEE

2005, ToN

BUT...

Similar stories in electricity nets, citation nets, ...
Heavy-tailed phenomena are treated as something **Mysteries, Surprising, & Controversial**

On Power-Law Relationships of the Internet Topology

Michalis Faloutsos
U.C. Riverside
Dept. of Comp. Science
michalis@cs.ucr.edu

Petros Faloutsos
U. of Toronto
Dept. of Comp. Science
pfal@cs.toronto.edu

Christos Faloutsos *
Carnegie Mellon Univ.
Dept. of Comp. Science
christos@cs.cmu.edu

1999 Sigcomm paper – 4500+ citations!

But...

Similar stories in electricity nets, citation nets, ...

On the Bias of Traceroute Sampling

or, Power-law Degree Distributions in Regular Graphs

Aaron Clauset
Department of Computer Science
University of New Mexico
Albuquerque, NM 87131
claust@cs.unm.edu

Christopher Moore
Department of Computer Science
University of New Mexico
Albuquerque, NM 87131
mcm@cs.unm.edu

Understanding Internet Topology: Principles, Models, and Validation

David Alderson, Member, IEEE, Lun Li, Student Member, IEEE, Walter Willinger, Fellow, IEEE, and John C. Doyle, Member, IEEE

2005, STOC
A “typical” approach for identifying of heavy tails: Linear Regression

Heavy-tailed or light-tailed?

“frequency plot”
A “typical” approach for identifying of heavy tails: **Linear Regression**

Heavy-tailed or light-tailed?

log-linear scale

Log(frequency) vs. value
A “typical” approach for identifying of heavy tails: **Linear Regression**

Heavy-tailed or light-tailed?

\[f(x) = Ce^{-\mu x} \Rightarrow \log f(x) = \log C - \mu x \]
A “typical” approach for identifying of heavy tails: **Linear Regression**

- **Heavy-tailed or light-tailed?**

 Log-log scale

 - \(f(x) = C x^{-\alpha-1} \) \(\rightarrow \) \(\log f(x) = \log C - (\alpha + 1) \log x \)

 Linear ⇒ Power-law tail

 Log-linear scale

 - \(f(x) = C e^{-\mu x} \) \(\rightarrow \) \(\log f(x) = \log C - \mu x \)

 Linear ⇒ Exponential tail
Regression \Rightarrow Estimate of tail index (α)

Linear \Rightarrow Power-law tail

log-log scale

\[f(x) = Cx^{-\alpha-1} \Rightarrow \log f(x) = \log C - (\alpha + 1) \log x \]
\[f(x) = Cx^{-\alpha - 1} \rightarrow \log f(x) = \log C - (\alpha + 1)\log x \]

Is it really linear?
Is the estimate of \(\alpha \) accurate?
\[
\Pr(X > x) = \bar{F}(x) = C'x^\alpha
\]
\[
f(x) = Cx^{-\alpha - 1}
\]
\[
\log f(x) = \log C - (\alpha + 1) \log x
\]

- True \(\alpha = 2.0\)
- \(\hat{\alpha} = 1.4\) (rank plot)
- \(\hat{\alpha} = 1.9\) (frequency plot)
This simple change is extremely important...

Pr(X > x)

“rank plot”

log-log scale

“frequency plot”

log-log scale
This simple change is extremely important...but it’s not enough.

Does this look like a power law?

The data is from an Exponential!
This mistake has happened **A LOT!**

Electricity grid degree distribution

\[\alpha = 3 \]
(from Science)

Pr(\(X > x\))

"rank plot"

"frequency plot"
This mistake has happened **A LOT!**

WWW degree distribution

- **log-log scale**
 - \(\alpha = 1.1 \)
 - (from *Science*)

“rank plot”

- \(\Pr(X > x) \)
 - \(\alpha = 1.7 \)

“frequency plot”

- log-log scale
This simple change is extremely important... But, this is still an error-prone approach.

Regression \Rightarrow Estimate of tail index (α)

Pr($X > x$)

"rank plot"

Linear \Rightarrow

Power-law tail

...other distributions can be nearly linear too

Lognormal

Weibull
This simple change is extremely important...
But, this is still an error-prone approach

Regression \Rightarrow
Estimate of tail index (α)

...assumptions of regression are not met
...tail is much noisier than the body

Linear \Rightarrow
Power-law tail

...other distributions can be nearly linear too

"rank plot"
A completely different approach: **Maximum Likelihood Estimation (MLE)**

What is the α for which the data is most “likely”?

\[
L(x; \alpha) = \prod_{i=1}^{n} \frac{\alpha x_i^\alpha}{x_i^{\alpha+1}}
\]

\[
\log L(x; \alpha) = \sum_{i=1}^{n} \log(\alpha x_i^\alpha) - \log x_i^{\alpha+1}
\]

Maximizing gives \(\hat{\alpha}_{MLE} = \frac{n}{\sum_{i=1}^{n} \log(x_i/x_{\min})} \)

This has many nice properties:

→ \(\hat{\alpha}_{MLE} \) is the minimal variance, unbiased estimator.

→ \(\hat{\alpha}_{MLE} \) is asymptotically efficient.
A completely different approach: **Maximum Likelihood Estimation (MLE)**

Not so...

Weighted Least Squares Regression (WLS)

Asymptotically for large data sets, when weights are chosen as $w_i = 1 / (\log x_i - \log x_0)$.

$$\hat{\alpha}_{WLS} = \frac{-\sum_{i=1}^{n} \log(\hat{r}_i/n)}{\sum_{i=1}^{n} \log(x_i/x_0)}$$

$$\sim \frac{n}{\sum_{i=1}^{n} \log(x_i/x_0)}$$

$$= \hat{\alpha}_{MLE}$$
A completely different approach: Maximum Likelihood Estimation (MLE)

Weighted Least Squares Regression (WLS)

asymptotically for large data sets, when weights are chosen as $w_i = 1 / (\log x_i - \log x_0)$.

"Listen to your body"
A quick summary of where we are:

Suppose data comes from a power-law (Pareto) distribution \(\bar{F}(x) = \left(\frac{x_0}{x} \right)^\alpha \).
Then, we can identify this visually with a log-log plot, and we can estimate \(\alpha \) using either MLE or WLS.
Suppose data comes from a power-law (Pareto) distribution
\[F(x) = \left(\frac{x_0}{x}\right)^\alpha. \]
Then, we can identify this visually with a log-log plot, and we can estimate \(\alpha \) using either MLE or WLS.

What if the data is not exactly a power-law?
What if only the tail is power-law?

Can we just use MLE/WLS on the “tail”?
But, where does the tail start?

Impossible to answer...
An example

Suppose we have a mixture of power laws:

\[F(x) = q F_1(x) + (1 - q) F_2(x) \]

We want \(\hat{\alpha}_{MLE} \to \alpha_1 \) as \(n \to \infty \).

...but, suppose we use \(x_{\text{min}} \) as our cutoff:

\[
\frac{1}{\hat{\alpha}_{MLE}} \to \frac{q F_1(x_{\text{min}})}{\alpha_1 F(x_{\text{min}})} + \frac{(1 - q) F_2(x_{\text{min}})}{\alpha_2 F(x_{\text{min}})} \neq \alpha_1
\]
Identifying power-law distributions
"Listen to your body"

v.s.

Identifying power-law tails
"Let the tail do the talking"

MLE/WLS

Extreme value theory
Returning to our example

Suppose we have a mixture of power laws:

\[\bar{F}(x) = q \bar{F}_1(x) + (1 - q) \bar{F}_2(x) \]

\[\alpha_1 < \alpha_2 \]

We want \(\hat{\alpha}_{MLE} \rightarrow \alpha_1 \) as \(n \rightarrow \infty \).

...but, suppose we use \(x_{\text{min}} \) as our cutoff:

\[\frac{1}{\hat{\alpha}_{MLE}} = \frac{q \bar{F}_1(x_{\text{min}})}{\alpha_1 \bar{F}(x_{\text{min}})} + \frac{(1 - q) \bar{F}_2(x_{\text{min}})}{\alpha_2 \bar{F}(x_{\text{min}})} \]

The bias disappears as \(x_{\text{min}} \rightarrow \infty \)!
The idea: Improve robustness by throwing away nearly all the data!

\[x_{\text{min}} \rightarrow x_{\text{min}}(n), \text{ where } x_{\text{min}}(n) \rightarrow \infty \text{ as } n \rightarrow \infty. \]

\[+ \text{ Larger } x_{\text{min}}(n) \Rightarrow \text{ Small bias} \]

\[- \text{ Larger } x_{\text{min}}(n) \Rightarrow \text{ Larger variance} \]
The idea: Improve robustness by throwing away nearly all the data!

\[x_{\text{min}} \xrightarrow{} x_{\text{min}}(n), \text{ where } x_{\text{min}}(n) \rightarrow \infty \text{ as } n \rightarrow \infty. \]

The Hill Estimator

\[\hat{\alpha}(k, n) = \frac{1}{k} \sum_{i=1}^{k} \log \left(\frac{x(i)}{x(k)} \right) \]

where \(x(k) \) is the \(k \)th largest data point.

Looks almost like the MLE, but uses order \(k \)th order statistic.
The idea: Improve robustness by throwing away nearly all the data!

\[x_{\min} \rightarrow x_{\min}(n), \text{ where } x_{\min}(n) \rightarrow \infty \text{ as } n \rightarrow \infty. \]

\[\hat{\alpha}(k, n) = \frac{1}{k} \sum_{i=1}^{k} \log \left(\frac{x(i)}{x(k)} \right) \]

where \(x(k) \) is the \(k \)th largest data point.

The Hill Estimator

Looks almost like the MLE, but uses order \(k \)th order statistic.

...how do we choose \(k \)?

\[\hat{\alpha}(k, n) \rightarrow \alpha \text{ as } n \rightarrow \infty \text{ if } \frac{k(n)}{n} \rightarrow 0 \text{ and } k(n) \rightarrow \infty \]

throw away nearly all the data, but keep enough data for consistency.
The idea: Improve robustness by throwing away nearly all the data!

$$x_{\min} \rightarrow x_{\min}(n), \text{ where } x_{\min}(n) \rightarrow \infty \text{ as } n \rightarrow \infty.$$
Choosing k in practice: The Hill plot
Choosing k in practice: The Hill plot

Pareto, $\alpha = 2$

Exponential
Choosing k in practice: The Hill plot

Pareto, $\alpha = 2$

Mixture, with Pareto-tail, $\alpha = 2$
...but the hill estimator has problems too

This data is from TCP flow sizes!

Hill HORROR plot

$k = 300, \hat{\alpha} = 1.4$

$k = 12000, \hat{\alpha} = 0.92$
Identifying power-law distributions
“Listen to your body”

Identifying power-law tails
“Let the tail do the talking”

MLE/WLS

Hill estimator

☆ It’s dangerous to rely on any one technique!
Heavy-tailed phenomena are treated as something
MYSTERIOUS, Surprising, & Controversial

1. Properties

2. Emergence

3. Identification
Heavy-tailed phenomena are treated as something mysterious, surprising, & controversial.

1. Properties
 - Pareto
 - Weibull
 - LogNormal
 - Regularly Varying

2. Emergence

3. Identification
 - Heavy-tailed distributions have many beautiful & strange properties
 1) Scale Invariance → Regularly Varying distributions
 2) The “catastrophe principle” → Subexponential distributions
 3) Residual lives “blow up” → Long-tailed distributions
Heavy-tailed phenomena are treated as something mysterious, surprising, and controversial.

1. Properties
2. Emergence
3. Identification

We’ve all been taught that the Normal is “normal” because of the Central Limit Theorem, BUT Heavy-tails are more “normal” than the Normal!
Heavy-tailed phenomena are treated as something mysterious, surprising, & controversial.

1. Properties
2. Emergence
3. Identification

Identifying power-law distributions: "Listen to your body"

Identifying power-law tails: "Let the tail do the talking"

MLE/WLS

Hill estimator
...and others we didn’t talk about
...and now back to networks:
Why do we see heavy-tailed degree distributions?
Erdos-Renyi

Preferential Attachment