CS137: Electronic Design Automation

Day 4: October 5, 2005
Two-Level Logic-Synthesis

Today

• Two-Level Logic Optimization
 – Problem
 – Definitions
 – Basic Algorithm: Quine-McClusky
 – Improvements

Problem

• Given: Expression in combinational logic
• Find: Minimum (cost) sum-of-products expression
• Ex.
 – $Y = a \cdot b \cdot c + a \cdot b \cdot c + a \cdot b \cdot c$
 – $Y = a \cdot b + a \cdot c$

EDA Use

• Minimum size PLA, PAL, …
 – Programmable Logic Array
 – Programmable Array Logic
• Minimum number of gates for two-level implementation
• Starting point for multi-level optimization

Programmable Array Logic (PLAs)

PLA

• Directly implement flat (two-level) logic
 – $O = a \cdot b \cdot c \cdot d + !a \cdot b \cdot !d + b \cdot c \cdot d$
• Exploit substrate properties allow wired-OR
Wired-or

- Connect series of inputs to wire
- Any of the inputs can drive the wire high

Programmable Wired-or

- Use some memory function to programmable connect (disconnect) wires to OR
- Fuse:

Wired-or array

- Build into array
 - Compute many different or functions from set of inputs
Combined or-arrays to PLA

- Combine two or (nor) arrays to produce PLA (or-and / and-or array)

PLA

- Can implement each and on single line in first array
- Can implement each or on single line in second array

Strictly speaking: or in first term and in second, but with both polarities of inputs, can invert so is and-or.

Nanowire PLA

PLA and PAL

PAL = Programmable Array Logic
PAL has fixed AND plane.

EDA Use for 2-level Logic Min.

- Minimum size PAL, PLA, ...
 - Programmable Logic Array
 - Programmable Array Logic
- Minimum number of gates for two-level implementation
- Starting point for multi-level optimization
Complexity

• Set covering problem
 – NP-hard

Cost

• PLA/PAL - first order
 – number of product terms
• Abstract (mis, sis)
 – {multilevel,sequential} interactive synthesis
 – number of literals
 • cost(y=a*b+a*c)=4
• General (simple, multi-level)
 – \(\sum \text{cost(product-term)} \)
 • e.g. nand2=4, nand3=5,nand4=6...

Terminology (1)

• Literals -- a, /a, b, /b,
 – Qualified, single inputs
• Minterms --
 – full set of literals covering one input case
 – in y=a*b+a*c
 • a*b*c
 • a*b/c
 • a'/b*c

Terminology (2)

• Cube:
 – product covering one or more minterms
 – Y=a*b+a*c
 – cubes:
 • a*b*c abc
 • a*b ab
 • a*c ac

Terminology (3)

• Cover:
 – set of cubes
 – sum products
 – (abc, a/bc, ab/c)
 – (ab,ac)

Truth Table

• Also represent function

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Specify on-set only
Cube/Logic Specification

- Canonical order for variables
- Use \{0,1,-\} to indicate input appearance in cube
 - 0 = inverted abc 111
 - 1 = not inverted a/bc 101
 - - = not present ac 1-1

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>y</th>
<th>101</th>
<th>101</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>011</td>
<td>110</td>
<td>111</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>010</td>
<td>110</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>001</td>
<td>010</td>
<td>111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>111</td>
<td>111</td>
<td>111</td>
</tr>
</tbody>
</table>

In General

- Three sets:
 - on-set (must be set to one by cover)
 - off-set (must be set to zero by cover)
 - don’t care set (can be zero or one)
- Don’t Cares
 - allow freedom in covering (reduce cost)
 - arise from cases where value doesn’t matter
 - e.g. outputs in non-existent FSM state
 - data bus value when not driving bus

Multiple Outputs

Truth Table:

<table>
<thead>
<tr>
<th>a b y x</th>
<th>001-</th>
<th>00-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 1 1</td>
<td>001-</td>
<td>00-1</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>010-</td>
<td>01-0</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>110-</td>
<td>10-0</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>111-</td>
<td>11-1</td>
</tr>
</tbody>
</table>

Multiple Outputs

- Can reduce to single output case
 - write equations on inputs and each output
 - with onset for relation being true
 - after cover
 - remove literals associated with outputs

Multiple Outputs

- Could Optimize separately
- By optimizing together
 - Maximize sharing of cubes/product-terms

Multiple Outputs

- Consider:
 - \(X = a/b +ab+ac \)
 - \(Y = bc \)
- Trivial solution has 4 product terms

00 0 0	00 1 1	01 1 0	01 1 1
01 0 0	01 1 1	10 0 0	10 0 1
10 0 0	10 1 0	10 1 1	11 0 0
11 0 0	11 1 0	11 1 1	11 1 1
Multiple Outputs

• Consider:
 – $X = \overline{a/b+ab+ac}$
 – $Y = \overline{bc}$
• Now read off cover:
 – $Y = \overline{bc}$
 – $A = \overline{a/b/c+/bc+ab}$

 \[
 \begin{array}{cccccccc}
 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 \\
 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
 \end{array}
 \]

 Only need 3 product terms (versus 4 w/ no sharing)

Prime Implicants

• Implicant -- cube in on-set
 – (not entirely in don’t-case set)
• Prime Implicant -- implicant, not contained in any other cube
 – for $y = a^b + a^c$
 • a^b is a prime implicant
 • $a^b c$ is not a prime implicant (contained in ab, ac)
 – i.e. largest cube still in on-set (on+dc-sets)

Prime Implicants

• Minimum cover will be made up of primes
 – less products if cover more
 – less literals in prime than contained cubes
• Necessary but not sufficient that minimum cover contain only primes
 – $y = ab + ac + b/c$
 – $y = ac + b/c$
• Number of PI’s can be exponential in input size
 – more than minterms, even!
 – Not all PI’s will be in optimum cover

Restate Goal

• Goal in terms of PIs
 – Find minimum size set of PIs which cover the on-set.

Essential Prime Implicants

• Prime Implicant which contains a minterm not covered by any other PI
 – Essential PI must occur in any cover
 – $y = ab + ac + b/c$
 – ab \[11-\ 110\ 111\]
 – ac \[1-1\ 101\ 111\]
 – b/c \[-10\ 110\ 010\]

 * essential (only 101)
 * essential (only 010)

Computing Primes

• Start with minterms
 – for on-set and dc-set
• merge pairs (distance one apart)
• for each pair merged,
 – mark source cubes as covered
• repeat merging for resulting cube set
 – until no more merging possible
• retain all unmarked cubes which aren’t entirely in dc-set
Compute Prime Example

0 0000
5 0101
7 0111
8 1000
9 1001
10 1010
11 1011
14 1110
15 1111

Compute Prime Example

0 0000
5 0101
7 0111
8 1000
9 1001
10 1010
11 1011
14 1110
15 1111

0, 8 -000
5, 7 01-1
7, 15 -111
8, 9 100-
8, 10 10-0
9, 11 101-
10, 11 1-10
10, 14 1-11
11, 15 1-15
14, 15 111-

Covering Matrix

• Minterms \times Prime Implicants

\begin{array}{c|cccc}
\text{0000} & X & & & \\
\text{0101} & & X & & \\
\text{0111} & & & X & X \\
\text{1000} & X & X & X & \\
\text{1001} & & & & \\
\text{1010} & & & & \\
\text{1011} & & & & \\
\text{1110} & & & & \\
\text{1111} & X & X & X & \\
\end{array}

Goal: minimum cover

Essential Reduction

• Must pick essential PI
 – pick and eliminate row and column

\begin{array}{c|cccc}
\text{0000} & X & & & \\
\text{0101} & & X & & \\
\text{0111} & & & X & X \\
\text{1000} & X & X & X & \\
\text{1001} & & & & \\
\text{1010} & & & & \\
\text{1011} & & & & \\
\text{1110} & & & & \\
\text{1111} & X & X & X & \\
\end{array}

Essential Reduction

• This case:
 – Cover determined by essentials

• General case:
 – Reduces size of problem
 – These are easy…
Dominators: Column

- If a column (PI) covers the same or strictly more than another column, you can remove the dominated column.

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>0101</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- C dominates B
- G dominates H

New Essentials

- Dominance reduction may yield new essential PIs.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0101</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- C, G now essential
- E dominates D and F

Cyclic Core

- After applying reductions:
 - essential
 - column dominators
 - row dominators
- May still have a non-trivial covering matrix
- How do we move forward from here?

Dominators: Row

- If a row has the same (or strictly more) PIs than another row, the larger row dominates.
 - We can remove the dominating row.

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>0101</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 0111 dominates 0101
- 1110 dominates 1010

Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cyclic Core

- Cannot select (e.g. essential) or exclude (e.g. dominated) a PI definitively.
- Make a guess
 - A in cover
 - A not in cover
- Proceed from there

Example

- A in cover:
- A not in cover:
 - B, C, D, E, F, G, H
 - {A, B, C} {A, /B, /C}

Example

- C dominates B
- G dominates H

Example

- A in cover:
- A not in cover:
 - B, C, D, E, F, G, H
 - {A, B} {A, /B}

Basic Two-Level Minimization

- Generate Prime Implicants
- Reduce (essential, dominators)
- If not done,
 - pick a cube
 - branch (back to reduce) on selected/not
 - i.e. search tree ... branch and bound
- Save smallest

Branching Search

A in cover

A not in cover

{A, B}

{A, /B}

{A, B, C}

{A, /B, /C}

For N primes, how large?
Branching Search w/ Implications

Implications Prune Tree

Only exponential in decision where must branch

Optimization

• Summarize Minterms (signature cubes)
 – rows represent collection of minterms with same primes
• Avoid generating full set of PIs
 – pre-combining dominators during generation
• Branch-and-bound pruning
 – get lower bound on remaining cost of a cover by computing independent set of primes
 • (not necessarily maximal, that would be NP-hard)

Heuristic

• Don’t backtrack when select prime for inclusion/exclusion
 – pick cover large set of minterms/signatures
 – weight to select “hard” to cover signatures
• Generate reduced set of PIs
• Iterative improvement

Canonical Form

• Can start with *any* form of logical expression
• Get unique truth-table/minterms
• Problem not sensitive to input statement
 – compare covering (decomposition)
 – compare sequential programming languages
• **Cost**: potentially exponential explosion in minterms/PIs

Summary

• Formulate as covering problem
• Solution space restricted to PIs
• Essentials must be in solution
• Use dominators to further reduce space
• Then branching/pruning to explore rest of PIs
• Ways to reduce work
 – group minterms/PIs together early
 – mostly fall into this general scheme

Admin

• Homework #1 Due Friday
• Next Wed. reading on web
Big Ideas

- Canonical Form
 - eliminate bias of input specification
- Technique:
 - branch-and-bound
 - dominators
 - use structure of problem to derive reduction between branching selection