Day 18: November 14, 2005
Dual Objective
Dynamic Programming

Today
• Cover and Place
 – Linear
 • GAMA
 • Optimal Tree-based
 – Area and Time
 • covering for
 …and linear placement
 – Two Dimensional
 • Lily

Covering Review
• Use dynamic programming to optimally cover trees
 – problem decomposable into subproblems
 – optimal solution to each are part of optimal
 – no interaction between subproblems
 – small number of distinct subproblems
 – single optimal solution to subproblem
• Break DAG into trees then cover optimally

Covering Basics
Basic Idea:
• Assume have optimal solution to all subproblems smaller than current problem
• try all wayes of implementing current root
 – each candidate solution is new gate + previously solve subtrees
 – pick best (smallest area, least delay, least power)

Placement
• How do we integrate placement into this covering process?

GaMa - Linear Placement
• Problem: cover and place datpaths in rows of FPGA-like cells to minimize area, delay
• Datapath width extends along one dimension (rows)
• Composition is 1D along other dimension (columns)
• Always covering SIMD row at a time
Basic Strategy
- Restrict each subtree to a contiguous set of rows
- Build up placement for subtree during cover
- When consider cover, also consider all sets of arrangements of subtrees
 - effectively expands library set

Simultaneous Placement Benefits
- Know real delay (including routing) during covering
 - make sure critical logic uses fastest inputs
 - shortest paths
- Know adjacency
 - can use special resources requiring adjacent blocks

GaMa Properties
- Operates in time linear in graph size
 - $O(|\text{rule set}| \times |\text{graph nodes}|)$
- Finds area-optimum for restricted problem
 - trees with contiguous subtrees
- As is, may not find delay optimum

GaMa Delay Example

GaMa Delay Problem
- Area can affect delay
- Doesn’t know when to pick worse delay to reduce area
 - make non-critical path subtree slower/smaller
 - so overall critical path will be close later
- Only tracking single objective
- Fixable as next technique demonstrates

GaMa Results
- Comparable result quality (area, time) to running through Xilinx tools
- Placement done in seconds as opposed to minutes to hours for Xilinx
 - simulated annealing, etc.
 - not exploiting datapath regularity
Simultaneous Mapping and Linear Placement of Trees

- **Problem**: cover and place standard cell row minimizing area
- **Area**: cell width and cut width
- **Technique**: combine DP-covering with DP-tree layout

Task

- **Minimize**:
 - Area = gate-width \(\times \) (gate-height + \(c \times \) wire-pitch)

Composition Challenge

- Minimum area solution to subproblems does **not** necessarily lead to minimum area solution:
 - \(\text{area}(s_2) = 3', \text{area}(s_1 + s_2) = 7' \)
 - \(\text{area}(s_1) = 2', \text{area}(s_1 + s_2) = 6' \)

Minimize Area

- Two components of area:
 - gate-area
 - cut-width
- Unclear during mapping when need
 - a smaller gate-area
 - vs. a smaller cut-width
 - at the expense of (local) cell area
 - (same problem as area vs. delay in GaMa)

Strategy

- Recognize that these are incomparable objectives
 - neither is strictly superior to other
 - keep all solutions
 - discard only inferior (dominated) solutions

Dominating/Inferior Solutions

- A solution is **dominated** if there is another solution strictly superior in all objectives
 - \(A = 3, T = 2 \) \(A = 2, T = 3 \)
 - neither dominates
 - \(A = 3, T = 3 \) \(A = 3, T = 2 \) \(A = 2, T = 3 \)
 - \(A = 3, T = 3 \) is inferior, being dominated by either of the other two solutions
Non-Inferior Curve

- Set of dominators defines a curve

This is a recurring theme—often prune work using dominator curve

Strategy

- Keep curve of non-inferior area-cut points
- During DP
 - build a new curve for each subtree
 - by looking at solution set intersections
 - cross product set of solutions from each subtrees feeding into this subtree

Consequences

- More work per graph point
 - keeping and intersecting many points
- Theory: points(fanin) * gates
- Points \leq range of solutions in smallest dimension
- e.g. points \leq number of different cut-widths

Algorithm: Tree Cover+Place

- For each tree node from leafs
 - For each gate cover
 - For each non-inferior point in fanin-subtrees
 - compute optimal tree layout
 - keep non-inferior points (cutwidth, gate-area)
- Optimal Tree Layout
 - Yannakakis/JACM v32n4p950, Oct. 1985

Time Notes

- Computing Optimal Tree layout:
 - O(Nlog(N))
- Per node: O(cutwidth(fanin) * N*log(N))
- Loose bound
 - possible to tighten?
 - less points and smaller "N" in tree for earlier subproblems
 - higher fanin→less depth→more use of small "N" for linear layout problems

Empirical Results

- Claim: 20% area improvement
Covering for Area and Delay

- Previously saw was hard to do DP to
 - simultaneously optimize for area and delay
 - properly generate area-time tradeoffs
- **Problem:**
 - whether or not needed a fast path
 - not clear until saw speed of siblings

[Chaudhary+Pedram/DAC’92]

Strategy

- Use same technique as just detailed for
 - gate-area + cutwidth
- **I.e.** -- at each tree cover
 - keep all non-inferior points
 - (effectively the full area-time curve)
 - as cover, intersect area-time curves to
 generate new area-time curve
- When get to a node
 - can pick smallest implementation for a
 child node that does not increase critical path

Strategy

- Repeat trick:
 - keep non-inferior points in three-space
 - <cut-width,gate-area,delay>
 - Intersect spaces to compute new cover spaces
 - May really need to discretize points to limit work

Points to Keep

- Usually small variance in times
 - if use discrete model like LUT delays, only a small number of different times
 - if use continuous model, can get close to optimum by discretizing and keeping a fixed set
- Similarly, small total variance in area
 - e.g. factor of 2-3
 - discretizing, gets close w/out giving up much
- Discretized: run in time linear in N
 - assuming bounded fanin gates

GaMa -- Optimal Delay

- Use this technique in GaMa
 - solve delay problem
 - get good area-delay tradeoffs
 - GARP has a discrete timing model
 - so already have small spread
 - for conventional FPGA
 - will have to discretize

Covering and Linear Placement for Area and Delay

- Have both
 - cut-width + gate-area affects
 - delay tradeoff
- Result
 - have three objectives to minimize
 - cut-width
 - gate-area
 - gate-delay

[Lou+Salek+Pedram/ICCAD’97]
Note

• Delay calculation:
 – assumes delay in gates and fanout
 – fanout effect makes heuristic
 • maybe iterate/relax?
 – ignores distance
• “Optimal” tree layout algorithm being used
 – is optimal with respect to cut-width
 – not optimal with respect to critical path wire length

Empirical Results

• Mapping for delay:
 – 20% delay improvement
 – achieving effectively same area
 • (of alternative, not of self targeting area)

Two Dimensions?

• Both so far, one-dimensional
• One-dimensional
 – nice layout restrictions
 – simple metric for delay
 – simple metric for area
• How extend to two dimensions?

2D Cover and Place

• Problem: cover and place in 2D to minimize area (delay)
• Area: gate area + “wirelength” area
• Delay: gate delay + estimated wire delay

Example

• Covering wrt placement matters

```
<table>
<thead>
<tr>
<th>nand2</th>
<th>nor2</th>
</tr>
</thead>
</table>
```

nor2(nand2(A,B),nand2(C,D))=AND(A,B,C,D)

Strategy

• Relax placement during covering
• Initially place unmapped using constructive placement (Day16)
• Cover via dynamic programming
• When cover a node,
 – fanins already visited
 – calculate new placement
 • Center of Mass…like Force Directed
• Periodically re-calculate placement
• Use estimated/refined placements to get area, delay
Incremental Placement

- Place newly covered nodes so as to minimize wire lengths (critical path delay?)

Empirical Results

- In 1μm
 - 5% area reduction
 - 8% delay reduction
- Not that inspiring
 - …but this was in the micron era
 - probably have a bigger effect today

Summary

- Can consider placement effects while covering
- Many problems can’t find optimum by minimizing single objective
 - delay (area effects)
 - area (cutwidth effects)
- Can adapt DP to solve
 - keep all non-inferior points
 - can keep polynomial time
 - if very careful, primarily increase constants

Admin

- No Class W,F
- Assignment 4 due Friday
- Next meeting M 11/21

Big Ideas:

- Simultaneous optimization
- Multi-dimensional objectives
 - dominating points (inferior points)
 - use with dynamic programming
- Exploit stylized problems can solve optimally
- Phase Ordering: estimate/iterate