CS137: Electronic Design Automation

Day 13: October 31, 2005
Partitioning
(Intro, KLFM)

Today

• Partitioning
 – why important
 – practical attack
 – variations and issues

Motivation (1)

• Divide-and-conquer
 – trivial case: decomposition
 – smaller problems easier to solve
 • net win, if super linear
 • Net(n) + 2×T(n/2) < T(n)
 – problems with sparse connections or interactions
 – Exploit structure
 • limited cutsize is a common structural property
 • random graphs would not have as small cuts

Motivation (2)

• Cut size (bandwidth) can determine area
• Minimizing cuts
 – minimize interconnect requirements
 – increases signal locality
• Chip (board) partitioning
 – minimize IO
• Direct basis for placement

Bisection Bandwidth

• Partition design into two equal size halves
• Minimize wires (nets) with ends in both halves
• Number of wires crossing is bisection bandwidth
• lower bw = more locality

Interconnect Area

• Bisection is lower-bound on IC width
 – Apply wire dominated
 • (recursively)
Classic Partitioning Problem

- **Given**: netlist of interconnect cells
- Partition into two (roughly) equal halves (A,B)
- minimize the number of nets shared by halves
- “Roughly Equal”
 - balance condition: $(0.5 - \delta)N \leq |A| \leq (0.5 + \delta)N$

Balanced Partitioning

- NP-complete for general graphs
- [ND17: Minimum Cut into Bounded Sets, Garey and Johnson]
- Reduce SIMPLE MAX CUT
- Reduce MAXIMUM 2-SAT to SMC
- Unbalanced partitioning poly time
- Many heuristics/attacks

KL FM Partitioning Heuristic

- Greedy, iterative
 - pick cell that decreases cut and move it
 - repeat
- small amount of non-greediness:
 - look past moves that make locally worse
 - randomization

Fiduccia-Mattheyses (Kernighan-Lin refinement)

- Start with two halves (random split?)
- Repeat until no updates
 - Start with all cells free
 - Repeat until no cells free
 - Move cell with largest gain (balance allows)
 - Update costs of neighbors
 - Lock cell in place (record current cost)
 - Pick least cost point in previous sequence and use as next starting position
- Repeat for different random starting points.

Efficiency

Tricks to make efficient:
- Expend little (O(1)) work picking move candidate
- Update costs on move cheaply [O(1)]
- Efficient data structure
 - update costs cheap
 - cheap to find next move

Ordering and Cheap Update

- Keep track of Net gain on node == delta net crossings to move a node
 - cut cost after move = cost - gain
- Calculate node gain as \(\Sigma \) net gains for all nets at that node
 - Each node involved in several nets
- Sort by gain
FM Cell Gains

Gain = Delta in number of nets crossing between partitions
= Sum of net deltas for nets on the node

After move node?

- Update cost each
 - Newcost = cost - gain
- Also need to update gains
 - on all nets attached to moved node
 - but moves are nodes, so push to
 - all nodes affected by those nets

Composability of Net Gains

\[-1 + 1 - 0 - 1 = -1\]

FM Recompute Cell Gain

- For each net, keep track of number of cells in each partition \([F(\text{net}), T(\text{net})]\)
- Move update: (for each net on moved cell)
 - if \(T(\text{net})==0\), increment gain on F side of net
 - (think \(-1 \Rightarrow 0\))
 - if \(T(\text{net})==1\), decrement gain on T side of net
 - (think \(1 \Rightarrow 0\))

FM Recompute Cell Gain

- For each net, keep track of number of cells in each partition \([F(\text{net}), T(\text{net})]\)
- Move update: (for each net on moved cell)
 - if \(T(\text{net})==0\), increment gain on F side of net
 - (think \(-1 \Rightarrow 0\))
 - if \(T(\text{net})==1\), decrement gain on T side of net
 - (think \(1 \Rightarrow 0\))
FM Recompute Cell Gain

- Move update: (for each net on moved cell)
 - if $T(net)==0$, increment gain on F side of net
 - if $T(net)==1$, decrement gain on T side of net
 - decrement $F(net)$, increment $T(net)$
 - if $F(net)==1$, increment gain on F cell
 - if $F(net)==0$, decrement gain on all cells (T)

FM Recompute (example)

[Note markings here are deltas...earlier pix were absolutes]
FM Recompute (example)

FM Recompute (example)

FM Recompute (example)

FM Recompute (example)

FM Data Structures

- Partition Counts A,B
- Two gain arrays
 - One per partition
 - Key: constant time cell update
- Cells
 - successors (consumers)
 - inputs
 - locked status

Binned by cost ⇒ constant time update

FM Optimization Sequence (ex)
FM Running Time?
- Randomly partition into two halves
- Repeat until no updates
 - Start with all cells free
 - Repeat until no cells free
 - Move cell with largest gain
 - Update costs of neighbors
 - Lock cell in place (record current cost)
 - Pick least cost point in previous sequence and use as next starting position
- Repeat for different random starting points

FM Starts?
So, FM gives a not bad solution quickly
21K random starts, 3K network -- Alpert/Kahng

FM Running Time
- Claim: small number of passes (constant?) to converge
- Small (constant?) number of random starts
- N cell updates each round (swap)
- Updates K + fanout work (avg. fanout K)
 - assume K-LUTs
- Maintain ordered list O(1) per move
 - every io move up/down by 1
- Running time: O(KN)
 - Algorithm significant for its speed (more than quality)

Weaknesses?
- Local, incremental moves only
 - hard to move clusters
 - no lookahead
- Looks only at local structure

Improving FM
- Clustering
- Technology mapping
- Initial partitions
- Runs
- Partition size freedom
- Replication

Following comparisons from Hauck and Boriello '96

Clustering
- Group together several leaf cells into cluster
- Run partition on clusters
- Uncluster (keep partitions)
 - iteratively
- Run partition again
 - using prior result as starting point
 - instead of random start
Clustering Benefits

- Catch local connectivity which FM might miss
 - moving one element at a time, hard to see move whole connected groups across partition
- Faster (smaller N)
 - METIS -- fastest research partitioner exploits heavily
 - FM work better w/ larger nodes (???)

How Cluster?

- Random
 - cheap, some benefits for speed
- Greedy “connectivity”
 - examine in random order
 - cluster to most highly connected
 - 30% better cut, 16% faster than random
- Spectral (next time)
 - look for clusters in placement
 - (ratio-cut like)
- Brute-force connectivity (can be $O(N^2)$)

LUT Mapped?

- Better to partition before LUT mapping.

Initial Partitions?

- Random
 - Pick Random node for one side
 - start imbalanced
 - run FM from there
- Pick random node and Breadth-first search to fill one half
- Pick random node and Depth-first search to fill half
- Start with Spectral partition

Initial Partitions

- If run several times
 - pure random tends to win out
 - more freedom / variety of starts
 - more variation from run to run
 - others trapped in local minima

Number of Runs
Number of Runs

- 2 - 10%
- 10 - 18%
- 20 <20% (2% better than 10)
- 50 (4% better than 10)
- ...but?

Unbalanced Cuts

- Increasing slack in partitions
 - may allow lower cut size

Unbalanced Partitions

Following comparisons from Hauck and Boriello ‘96

Replication

- Trade some additional logic area for smaller cut size
 - Net win if wire dominated

Replication data from: Enos, Hauck, Sarrafzadeh ‘97

Replication

- 5% ➔ 38% cut size reduction
- 50% ➔ 50+% cut size reduction
What Bisection doesn’t tell us

- Bisection bandwidth purely geometrical
- No constraint for delay
 - I.e. a partition may leave critical path weaving between halves

Critical Path and Bisection

Minimum cut may cross critical path multiple times. Minimizing long wires in critical path => increase cut size.

So...

- Minimizing bisection
 - good for area
 - oblivious to delay/critical path

Partitioning Summary

- Decompose problem
- Find locality
- NP-complete problem
- Linear heuristic (KLFM)
- Many ways to tweak
 - Hauck/Boriello, Karypis
 - Even better with replication
- Only address cut size, not critical path delay

Admin

- Assignment 3B
 - See email
 - Recommend adding constraints incrementally
- Reading
 - Hall handout for Wednesday

Today’s Big Ideas:

- Divide-and-Conquer
- Exploit Structure
 - Look for sparsity/locality of interaction
- Techniques:
 - Greedy
 - Incremental improvement
 - Randomness avoid bad cases, local minima
 - Incremental cost updates (time cost)
 - Efficient data structures