cuRAND uses GPU to generate pseudorandom numbers
Host and Device API
Host API like cuBLAS but for random numbers
Device API can generate numbers while in kernel, more complicated
Monte Carlo Example

Cuda with random numbers is very useful for Monte Carlo
Repeated random sampling of the same system to get results

Each repetition is independent -> parallelizable!
Monte Carlo Example

Simple example: numerically approximate pi
randomly scatter points, in a region, and calculate the fraction of points inside the circle
Monte Carlo Example

Parametric definition of a circle makes it easy to tell which points are in the circle

\[x^2 + y^2 < 1 : \text{inside unit circle} \]
Monte Carlo Example

Generate points uniformly distributed in
\{(0, 1], (0, 1]\}

float* dev_points;
curandGenerator_t gen;
curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_DEFAULT);
curandGenerateUniform(gen, dev_points, numPoints * 2);
Monte Carlo Example

Check bounds and reduce

```c
__global__ void countPointsInCircle(float* points, int n)
{
    extern int sharedMem[];
    int idx = threadIdx.x + blockIdx.x * blockDim.x;
    float x = points[idx];
    float y = points[idx + n];
    sharedMem[threadIdx.x] = (x * x + y * y < 1);
    //syncthreads and perform summing reduction
}
```
Monte Carlo Example

Just use our count to calculate the value we want

\[
\frac{\text{sum}}{\text{numPoints}} \text{ is } \frac{\pi}{4}
\]
Individual transitions are memoryless, if nothing happens for a long time, the system does not “remember” this
Gillespie algorithm

Simulation step:
Calculate the probability of each transition being the next event, calculate the distribution of the time the next event will occur at
Gillespie algorithm

Minimum of exponential random variables
if X_1, X_2, X_3... are exponential random variables
$
\min(X_1, X_2, X_3...) \text{ is an exponential random variable with } \lambda = \lambda_1 + \lambda_2 + \lambda_3...
$
So we can calculate our transition distributions

\[P(\text{event } i \text{ happens next}) = \frac{\lambda_i}{\text{sum(all } \lambda)} \]

Distribution of times

\[T : \text{exponential with rate constant } = \text{sum(all } \lambda) \]
Gillespie algorithm

We can sample these random variables using uniform distributions taken from cuRAND
A biological molecule is produced by a large reservoir of reactants, and decays at a rate proportional to concentration

reactants $\rightarrow X \rightarrow 0$
Nonstochastic model
\[\frac{d[X]}{dt} = k - \gamma \cdot [X] \]

Only accounts for average behavior
What is the variance of \([X]\) at equilibrium?
Simple Chemical Simulation

Reaction propensities

\[\text{X}++ \rightarrow \text{k} \]

\[\text{X}-- \rightarrow \gamma \times \text{X} \]
Simple Chemical Simulation

[Graphs showing concentration and variance over time]