CS 179: GPU Programming

Lecture 9 / Homework 3
Recap

• Some algorithms are “less obviously parallelizable”:
 – Reduction
 – Sorts
 – FFT (and certain recursive algorithms)
Parallel FFT structure (radix-2)

Bit-reversed access

Stage 1

Stage 2

Stage 3

http://staff.ustc.edu.cn/~csli/graduate/algorithms/book6/chap32.htm
cuFFT 1D example

#define NX 262144

cufftComplex *data_host
 = (cufftComplex*)malloc(sizeof(cufftComplex)*NX);
cufftComplex *data_pack
 = (cufftComplex*)malloc(sizeof(cufftComplex)*NX);

// Get data...

cufftHandle plan;
cufftComplex *data1;
cudaMalloc((void**)&data1, sizeof(cufftComplex)*NX);
cudaMemcpy(data1, data_host, NX*sizeof(cufftComplex), cudaMemcpyHostToDevice);

/* Create a 1D FFT plan. */
int batch = 1; // Number of transforms to run
(cufftPlan1d(plan, NX, CUFFT_C2C, batch);

/* Transform the first signal in place. */
cufftExecC2C(plan, data1, data1, CUFFT_FORWARD);

/* Inverse transform in place. */
cufftExecC2C(plan, data1, data1, CUFFT_INVERSE);

cudaMemcpy(data_back, data1, NX*sizeof(cufftComplex), cudaMemcpyDeviceToHost);

Correction: Remember to use cufftDestroy(plan) when finished with transforms
Today

• Homework 3
 – Large-kernel convolution

• Project Introductions
Systems

- Given input signal(s), produce output signal(s)
LTI system review (Week 1)

• “Linear time-invariant” (LTI) systems
 – Lots of them!

• Can be characterized entirely by “impulse response” $h[n]$

• Output given from input by convolution:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
Parallelization

\[y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] \]

• Convolution is parallelizable!
 – Sequential pseudocode (ignoring boundary conditions):

 (set all \(y[i] \) to 0)
 For (i from 0 through x.length - 1)
 for (j from 0 through h.length - 1)
 \(y[i] \) += (appropriate terms from x and h)
A problem...

• This worked for *small* impulse responses
 – E.g. $h[n]$, $0 \leq n \leq 20$ in HW 1

• Homework 1 was “small-kernel convolution”:
 – (Vocab alert: Impulse responses are often called “kernels”!)
A problem...

\[y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] \]

• Sequential runtime: O(n\times m)
 – (n: size of x)
 – (m: size of h)
 – Troublesome for large m! (i.e. large impulse responses)

(set all y[i] to 0)
For (i from 0 through x.length - 1)
 for (j from 0 through h.length - 1)
 y[i] += (appropriate terms from x and h)
DFT/FFT

• Same problem with Discrete Fourier Transform!

\[X_k \overset{\text{def}}{=} \sum_{n=0}^{N-1} x_n \cdot e^{-2\pi i kn/N}, \quad k \in \mathbb{Z} \]

• Successfully optimized \textit{and} GPU-accelerated!
 – O(n^2) to O(n \log n)
 – Can we do the same here?
“Circular” convolution
“Circular” convolution

• Linear convolution:

\[y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k] \]

• Circular convolution:

\[y[n] = \sum_{k=0}^{N-1} x[k] h[(n-k) \mod N] \]
Example:

- \(x[0..3], h[0..1] \)
- Linear convolution:
 \[
 y[0] = x[0]h[0] \\
 \]

- Circular convolution:
 \[
 y[n] = \sum_{k=0}^{N-1} x[k] h[(n - k) \mod N] = 0
 \]
Circular Convolution Theorem*

\[y[n] = \sum_{k=0}^{N-1} x[k] h[(n - k) \mod N] \]

- Can be calculated by: \(\text{IFFT}(\text{FFT}(x) \cdot \text{FFT}(h)) \)
- i.e.

\[
\begin{align*}
\hat{X} &= \text{FFT}(\bar{x}) \\
\hat{H} &= \text{FFT}(\bar{h}) \\
Y_i &= X_i H_i \\
\hat{y} &= \text{IFFT}(\bar{Y})
\end{align*}
\]

- For all \(i \):
- Then:

* DFT case
Circular Convolution Theorem*

\[y[n] = \sum_{k=0}^{N-1} x[k] h[(n - k) \mod N] \]

- Can be calculated by: \(\text{IFFT} \left(\text{FFT}(x) \cdot \text{FFT}(h) \right) \)
- i.e.

\[
\begin{align*}
\hat{X} &= \text{FFT}(\hat{x}) & \text{O}(n \log n) & \text{Assume } n > m \\
\hat{H} &= \text{FFT}(\hat{h}) & \text{O}(m \log m)
\end{align*}
\]

- For all \(i \):

\[Y_i = X_i H_i \quad \text{O}(n) \]

- Then:

\[\hat{y} = \text{IFFT}(\hat{Y}) \quad \text{O}(n \log n) \]

* DFT case
• $x[n]$ and $h[n]$ are different lengths?

• How to linearly convolve using circular convolution?
Padding

- $x[n]$ and $h[n]$ – presumed zero where not defined
 - Computationally: Store $x[n]$ and $h[n]$ as larger arrays
 - Pad both to at least $\text{x.length} + \text{h.length} - 1$
Example: (Padding)

- $x[0..3], h[0..1]$

 - Linear convolution:

 $\begin{align*}
 y[0] &= x[0]h[0] \\
 \end{align*}$

 - Circular convolution:

 $\begin{align*}
 y[n] &= \sum_{k=0}^{N-1} x[k] h[(n - k) \mod N] \\
 \end{align*}$

 N is now $(4 + 2 - 1) = 5$
Summary

• Alternate algorithm for large impulse response convolution!
 – Serial: $O(n \log n)$ vs. $O(mn)$
 • Small vs. large m determines algorithm choice
 • Runtime does “carry over” to parallel situations (to some extent)
Homework 3, Part 1

• Implement FFT ("large-kernel") convolution
 – Use cuFFT for FFT/IFFT (if brave, try your own)
 • Use "batch" variable to save FFT calculations
 Correction: Good practice in general, but results in poor performance on Homework 3

 – Complex multiplication kernel: Week 1-style

 – (HW1 difference: Consider right-hand boundary region)
Complex numbers

• cufftComplex: cuFFT complex number type
 — Example usage:

 cufftComplex a;
 a.x = 3; // Real part
 a.y = 4; // Imaginary part

• Element-wise multiplying:

 (a + bi)(c + di) = (ac - bd) + (ad + bc)i
Homework 3, Part 2
Normalization

- Amplitudes must lie in range [-1, 1]
 - Normalize s.t. maximum magnitude is 1 (or 1 - ε)

- How to find maximum amplitude?
Reduction

• This time, maximum (instead of sum)
 – Lecture 7 strategies
 – “Optimizing Parallel Reduction in CUDA” (Harris)
Homework 3, Part 2

• Implement GPU-accelerated normalization
 – Find maximum (reduction)
 – Divide by maximum to normalize
(Demonstration)

- Rooms can be modeled as LTI systems!
Other notes

• Machines:
 – Normal mode: haru, mx, minuteman
 – Audio mode: haru

• Due date: Friday (4/24), 3 PM
 Correction: 11:59 PM
 – Extra office hours: Thursday (4/23), 8-10 PM
Projects