Gittins Policy on NBUE + DHR(k) Job Sizes

Matthew Maurer

Performance Modeling, 2009
Outline

1. Gittins Policy
 - Gittins Index
 - Gittins Policy Application

2. NBUE + DHR(k) Distributions
 - Gittins Reduction to FCFS + FB(θ)
 - Gittins Index Properties
 - Policy Properties
 - Pareto Example
Outline

1. **Gittins Policy**
 - Gittins Index
 - Gittins Policy Application

2. **NBUE + DHR(k) Distributions**
 - Gittins Reduction to FCFS + FB(\(\theta\))
 - Gittins Index Properties
 - Policy Properties
 - Pareto Example
Gittins Index Motivation

- K-Armed Bandit Problem
- Optimal Blind Scheduling
Gittins Index Motivation

- K-Armed Bandit Problem
- Optimal Blind Scheduling
Gittins Index Candidates

- Payoff?
 - Costs not accounted for

- Payoff - Investment?
 - Doesn’t make sense – Payoff and Investment are not necessarily in the same units

- ?

- Maximal Ratio of Payoff to Investment
Gittins Index Candidates

- Payoff?
 - Costs not accounted for

- Payoff - Investment?
 - Doesn’t make sense – Payoff and Investment are not necessarily in the same units

- ?

- Maximal Ratio of Payoff to Investment
Gittins Index Candidates

- Payoff?
 - Costs not accounted for

- Payoff - Investment?
 - Doesn’t make sense – Payoff and Investment are not necessarily in the same units

- Maximal Ratio of Payoff to Investment
Gittins Index Candidates

- Payoff?
 - Costs not accounted for

- Payoff - Investment?
 - Doesn’t make sense – Payoff and Investment are not necessarily in the same units

- ?

- Maximal Ratio of Payoff to Investment
Gittins Index Candidates

- Payoff?
 - Costs not accounted for
- Payoff - Investment?
 - Doesn’t make sense – Payoff and Investment are not necessarily in the same units
- Maximal Ratio of Payoff to Investment
Gittins Index Candidates

- Payoff?
 - Costs not accounted for
- Payoff - Investment?
 - Doesn’t make sense – Payoff and Investment are not necessarily in the same units
- Maximal Ratio of Payoff to Investment
Scheduling View of Gittins Index

- We parameterize the Gittins Index over
 - \(a \), the current age of the job
 - \(T \), the service quota

- We can think of varying \(T \) as varying the investment.

\[
J(a, T) = \frac{E[\text{Job Completes}|T]}{E[T_{\text{Completion}}|T]} = \frac{\int_0^T f(a+t)dt}{\int_0^T \bar{F}(a+t)}
\]

- \(G(a) = \sup_{T \geq 0} J(a, T) \)
Scheduling View of Gittins Index

- We parameterize the Gittins Index over
 - a, the current age of the job
 - T, the service quota

- We can think of varying T as varying the investment.

- $J(a, T) = \frac{E[\text{Job Completes}|T]}{E[T_{\text{Completion}}|T]} = \frac{\int_0^T f(a+t)dt}{\int_0^T \bar{F}(a+t)}$

- $G(a) = \sup_{T \geq 0} J(a, t)$
We parameterize the Gittins Index over
- a, the current age of the job
- T, the service quota

We can think of varying T as varying the investment.

$$J(a, T) = \frac{E[\text{Job Completes} | T]}{E[T_{\text{Completion}} | T]} = \frac{\int_0^T f(a+t)dt}{\int_0^T F(a+t)}$$

$$G(a) = \sup_{T \geq 0} J(a, t)$$
Scheduling View of Gittins Index

- We parameterize the Gittins Index over
 - \(a \), the current age of the job
 - \(T \), the service quota
- We can think of varying \(T \) as varying the investment.

 \[
 J(a, T) = \frac{E[\text{Job Completes}|T]}{E[\text{T Completion}|T]} = \frac{\int_0^T f(a+t)dt}{\int_0^T F(a+t)}
 \]

 \[
 G(a) = \sup_{T \geq 0} J(a, t)
 \]
Scheduling View of Gittins Index

- We parameterize the Gittins Index over
 - a, the current age of the job
 - T, the service quota

- We can think of varying T as varying the investment.

- $J(a, T) = \frac{E[\text{Job Completes} | T]}{E[T_{\text{Completion}} | T]} = \frac{\int_0^T f(a + t) dt}{\int_0^T \bar{F}(a + t)}$

- $G(a) = \sup_{T \geq 0} J(a, t)$
Scheduling View of Gittins Index

- We parameterize the Gittins Index over
 - a, the current age of the job
 - T, the service quota
- We can think of varying T as varying the investment.

\[
J(a, T) = \frac{E[\text{Job Completes}| T]}{E[T_{\text{Completion}}| T]} = \frac{\int_0^T f(a+t)dt}{\int_0^T \bar{F}(a+t)}
\]

\[
G(a) = \sup_{T \geq 0} J(a, t)
\]
Outline

1. Gittins Policy
 - Gittins Index
 - Gittins Policy Application

2. NBUE + DHR\((k)\) Distributions
 - Gittins Reduction to FCFS + FB\((\theta)\)
 - Gittins Index Properties
 - Policy Properties
 - Pareto Example
Gittins Policy Motivation

- We are usually blind
- We usually know the distribution, and can approximate it well after some startup time if not
- Optimal!
Gittins Policy Motivation

- We are usually blind
- We usually know the distribution, and can approximate it well after some startup time if not
- Optimal!
Gittins Policy Motivation

- We are usually blind
- We usually know the distribution, and can approximate it well after some startup time if not
- Optimal!
Gittins Index Computation

- **Exact**
 - To compute $G(a)$ exactly, we have to compute $J(a, T)$ for some T.
 - We need to take the analytic minimum of $J(a, T)$ with respect to T.

- **Approximation**
 - We can approximate $J(a, T)$ easily.
 - Optimization of a computationally expensive function over the real line...

- This algorithm was initially developed for discrete time cases, and it shows.
Gittins Index Computation

- **Exact**
 - To compute $G(a)$ exactly, we have to compute $J(a, T)$ for some T.
 - We need to take the analytic minimum of $J(a, T)$ with respect to T.

- **Approximation**
 - We can approximate $J(a, T)$ easily.
 - Optimization of a computationally expensive function over the real line...

- This algorithm was initially developed for discrete time cases, and it shows.
Gittins Index Computation

- **Exact**
 - To compute $G(a)$ exactly, we have to compute $J(a, T)$ for some T.
 - We need to take the analytic minimum of $J(a, T)$ w/rsp to T.

- **Approximation**
 - We can approximate $J(a, T)$ easily
 - Optimization of a computationally expensive function over the real line...

- This algorithm was initially developed for discrete time cases, and it shows.
Gittins Index Computation

- **Exact**
 - To compute $G(a)$ exactly, we have to compute $J(a, T)$ for some T.
 - We need to take the analytic minimum of $J(a, T)$ w/rsp to T.

- **Approximation**
 - We can approximate $J(a, T)$ easily
 - Optimization of a computationally expensive function over the real line...

- This algorithm was initially developed for discrete time cases, and it shows.
Gittins Index Computation

- **Exact**
 - To compute $G(a)$ exactly, we have to compute $J(a, T)$ for some T.
 - We need to take the analytic minimum of $J(a, T)$ w/rspt to T.

- **Approximation**
 - We can approximate $J(a, T)$ easily
 - Optimization of a computationally expensive function over the real line...

- This algorithm was initially developed for discrete time cases, and it shows.
Gittins Index Computation

- **Exact**
 - To compute $G(a)$ exactly, we have to compute $J(a, T)$ for some T.
 - We need to take the analytic minimum of $J(a, T)$ w/rsp to T.

- **Approximation**
 - We can approximate $J(a, T)$ easily
 - Optimization of a computationally expensive function over the real line...

- This algorithm was initially developed for discrete time cases, and it shows.
Gittins Index Computation

- **Exact**
 - To compute $G(a)$ exactly, we have to compute $J(a, T)$ for some T.
 - We need to take the analytic minimum of $J(a, T)$ w/rsp to T.

- **Approximation**
 - We can approximate $J(a, T)$ easily
 - Optimization of a computationally expensive function over the real line...

- This algorithm was initially developed for discrete time cases, and it shows.
Gittins Policy Usage

- Generalized Blind Approximation - Impractical
- Specific Distributions - Analytic Simplification
Gittins Policy Usage

- Generalized Blind Approximation - Impractical
- Specific Distributions - Analytic Simplification
Outline

1. Gittins Policy
 - Gittins Index
 - Gittins Policy Application

2. NBUE + DHR\((k)\) Distributions
 - Gittins Reduction to FCFS + FB\((\theta)\)
 - Gittins Index Properties
 - Policy Properties
 - Pareto Example
Problem Statement

- Blind
 - Distribution Head NBUE
 - Distribution Tail DHR after k
Problem Statement

- Blind
- Distribution Head NBUE
- Distribution Tail DHR after k
Problem Statement

- Blind
- Distribution Head NBUE
- Distribution Tail DHR after k
To optimize J, we calculate its derivative

$$\frac{\delta J}{\delta T} = \frac{f(a+T) \int_0^T \bar{F}(a+t)dt + \bar{F}(a+T) \int_0^T f(a+t)dt}{\int_0^T \bar{F}(a+t)dt}$$

If we let h represent the hazard rate of the distribution, we have

$$\frac{\delta J}{\delta T} = \frac{\bar{F}(a+T)(h(a+T) - J(a,T))}{\int_0^T \bar{F}(a+t)dt}$$
To optimize J, we calculate its derivative

$$\frac{\delta J}{\delta T} = \frac{f(a+T) \int_0^T \bar{F}(a+t) dt + \bar{F}(a+T) \int_0^T f(a+t) dt}{\int_0^T \bar{F}(a+t) dt}$$

If we let h represent the hazard rate of the distribution, we have

$$\frac{\delta J}{\delta T} = \frac{\bar{F}(a+T)(h(a+T) - J(a,T))}{\int_0^T \bar{F}(a+t) dt}$$
To optimize J, we calculate its derivative:

$$
\frac{\delta J}{\delta T} = \frac{f(a+T) \int_0^T \bar{F}(a+t) dt + \bar{F}(a+T) \int_0^T f(a+t) dt}{\int_0^T \bar{F}(a+t) dt}
$$

If we let h represent the hazard rate of the distribution, we have

$$
\frac{\delta J}{\delta T} = \frac{\bar{F}(a+T)(h(a+T) - J(a,T))}{\int_0^T \bar{F}(a+t) dt}
$$
Lemmas

- We introduce the notation T_a to represent the optimal T choice for a job of age a
- We omit the proofs for these Lemmas for time and relevance

 $\forall a, x : a \leq x < a + T_a, G(a) \leq G(x)$

 $\forall a : T_a < \infty, G(a + T_a) \leq G(a)$
Lemmas

- We introduce the notation T_a to represent the optimal T choice for a job of age a
- We omit the proofs for these Lemmas for time and relevance

- $\forall a, x : a \leq x < a + T_a, G(a) \leq G(x)$
- $\forall a : T_a < \infty, G(a + T_a) \leq G(a)$
Lemmas

- We introduce the notation T_a to represent the optimal T choice for a job of age a.
- We omit the proofs for these Lemmas for time and relevance.

 $\forall a, x : a \leq x < a + T_a, G(a) \leq G(x)$
 $\forall a : T_a < \infty, G(a + T_a) \leq G(a)$
Lemmas

- We introduce the notation T_a to represent the optimal T choice for a job of age a
- We omit the proofs for these Lemmas for time and relevance
 - $\forall a, x : a \leq x < a + T_a, G(a) \leq G(x)$
 - $\forall a : T_a < \infty, G(a + T_a) \leq G(a)$
Proof Overview

- \(T_0 \geq k \)
- \(\forall a : a < T_0, G(a) \geq G(0) \)
- \(\forall a : a > k, G(a) \) is decreasing
- \(\forall T_0 : T_0 < \infty, G(T_0) \geq G(0) \)
Proof Overview

- $T_0 \geq k$
- $\forall a : a < T_0, G(a) \geq G(0)$
- $\forall a : a > k, G(a)$ is decreasing
- $\forall T_0 : T_0 < \infty, G(T_0) \geq G(0)$
Proof Overview

- $T_0 \geq k$
- $\forall a : a < T_0, G(a) \geq G(0)$
- $\forall a : a > k, G(a)$ is decreasing
- $\forall T_0 : T_0 < \infty, G(T_0) \geq G(0)$
Proof Overview

- $T_0 \geq k$
- $\forall a : a < T_0, G(a) \geq G(0)$
- $\forall a : a > k, G(a)$ is decreasing
- $\forall T_0 : T_0 < \infty, G(T_0) \geq G(0)$
Property I

- Take some \(x : 0 < x < k \)
- As it has a NBUE head, \(H(x) \geq H(0) \)
- Converting to \(J \), \(J(x, \infty) \geq J(0, \infty) \)
- \(\frac{F(x)}{\int_x^\infty F(t) dt} \geq \frac{1}{\int_0^\infty F(t) dt} \)
- Running math, we get \(\frac{1}{\int_0^\infty F(t) dt} \geq \frac{F(x)}{\int_0^x F(t) dt} \)
- Back in index form, this gives \(G(0) \geq J(0, x) \)
- As \(x \) is valid from 0 to \(k \), we have \(T_0 \geq k \)
Property I

- Take some $x : 0 < x < k$
- As it has a NBUE head, $H(x) \geq H(0)$
- Converting to J, $J(x, \infty) \geq J(0, \infty)$
- $\frac{F(x)}{\int_x^\infty F(t)dt} \geq \frac{1}{\int_0^\infty F(t)dt}$
- Running math, we get $\frac{1}{\int_0^\infty F(t)dt} \geq \frac{F(x)}{\int_0^x F(t)dt}$
- Back in index form, this gives $G(0) \geq J(0, x)$
- As x is valid from 0 to k, we have $T_0 \geq k$
Property I

- Take some $x : 0 < x < k$
- As it has a NBUE head, $H(x) \geq H(0)$
- Converting to J, $J(x, \infty) \geq J(0, \infty)$

\[
\frac{F(x)}{\int_x^\infty F(t) dt} \geq \frac{1}{\int_0^\infty F(t) dt}
\]

- Running math, we get $\frac{1}{\int_0^\infty F(t) dt} \geq \frac{F(x)}{\int_0^x F(t) dt}$
- Back in index form, this gives $G(0) \geq J(0, x)$
- As x is valid from 0 to k, we have $T_0 \geq k$
Property I

- Take some $x : 0 < x < k$
- As it has a NBUE head, $H(x) \geq H(0)$
- Converting to J, $J(x, \infty) \geq J(0, \infty)$

\[
\frac{F(x)}{\int_{x}^{\infty} F(t)dt} \geq \frac{1}{\int_{0}^{\infty} F(t)dt}
\]

- Running math, we get $\int_{0}^{\infty} \frac{1}{F(t)dt} \geq \frac{F(x)}{\int_{0}^{x} F(t)dt}$
- Back in index form, this gives $G(0) \geq J(0, x)$
- As x is valid from 0 to k, we have $T_0 \geq k$
Property I

- Take some $x : 0 < x < k$
- As it has a NBUE head, $H(x) \geq H(0)$
- Converting to J, $J(x, \infty) \geq J(0, \infty)$
- $\frac{F(x)}{\int_x^\infty F(t)dt} \geq \frac{1}{\int_0^\infty F(t)dt}$
- Running math, we get $\frac{1}{\int_0^\infty F(t)dt} \geq \frac{F(x)}{\int_0^x F(t)dt}$
- Back in index form, this gives $G(0) \geq J(0, x)$
- As x is valid from 0 to k, we have $T_0 \geq k$
Property I

- Take some $x : 0 < x < k$
- As it has a NBUE head, $H(x) \geq H(0)$
- Converting to J, $J(x, \infty) \geq J(0, \infty)$
- \[
 \frac{F(x)}{\int_x^\infty F(t)dt} \geq \frac{1}{\int_0^\infty F(t)dt}
 \]
- Running math, we get \[
 \frac{1}{\int_0^\infty F(t)dt} \geq \frac{F(x)}{\int_x^\infty F(t)dt}
 \]
- Back in index form, this gives $G(0) \geq J(0, x)$
- As x is valid from 0 to k, we have $T_0 \geq k$
Property I

- Take some \(x : 0 < x < k \)
- As it has a NBUE head, \(H(x) \geq H(0) \)
- Converting to \(J \), \(J(x, \infty) \geq J(0, \infty) \)
- \[\frac{\bar{F}(x)}{\int_x^{\infty} F(t) dt} \geq \frac{1}{\int_0^{\infty} F(t) dt} \]
- Running math, we get \[\int_0^{\infty} \frac{1}{F(t) dt} \geq \int_x^{\infty} \frac{F(x)}{F(t) dt} \]
- Back in index form, this gives \(G(0) \geq J(0, x) \)
- As \(x \) is valid from 0 to \(k \), we have \(T_0 \geq k \)
Property II

See the first lemma. The proof is omitted as it is a sufficiently general result.
Setting our derivative to zero, we get the equation

\[\frac{\bar{F}(a+T)(h(a+T)-J(a,T))}{\int_0^T \bar{F}(a+t)dt} = 0 \]

Excluding infinite \(T \), the \(\bar{F} \) term will not zero, so we have

\[h(a+T) = J(a, T) \]

For \(a \geq k \), we have the DHR property, so \(G(a) = J(a, 0) = h(a) \)

We have the DHR property, so \(G(a) \) is decreasing for \(a \geq k \).
Property III

- Setting our derivative to zero, we get the equation
 \[
 \frac{\bar{F}(a+T)(h(a+T) - J(a,T))}{\int_0^T \bar{F}(a+t)dt} = 0
 \]
- Excluding infinite \(T \), the \(\bar{F} \) term will not zero, so we have
 \[h(a + T) = J(a, T) \]
- For \(a \geq k \), we have the DHR property, so \(G(a) = J(a, 0) = h(a) \)
- We have the DHR property, so \(G(a) \) is decreasing for \(a \geq k \).
Setting our derivative to zero, we get the equation
\[\bar{F}(a+T)(h(a+T)-J(a,T)) \int_0^T \bar{F}(a+t)dt = 0 \]

Excluding infinite \(T \), the \(\bar{F} \) term will not zero, so we have \(h(a+T) = J(a, T) \)

For \(a \geq k \), we have the DHR property, so \(G(a) = J(a, 0) = h(a) \)

We have the DHR property, so \(G(a) \) is decreasing for \(a \geq k \).
Setting our derivative to zero, we get the equation
\[\int_0^T \bar{F}(a+t)dt = 0 \]

Excluding infinite \(T \), the \(\bar{F} \) term will not zero, so we have
\[h(a + T) = J(a, T) \]

For \(a \geq k \), we have the DHR property, so \(G(a) = J(a, 0) = h(a) \)

We have the DHR property, so \(G(a) \) is decreasing for \(a \geq k \).
Property IV

See the second lemma. The proof is omitted as it is a sufficiently general result.
Policy Derivation

- We have $\forall a : a < T_0, G(a) \geq G(0)$ and $\forall T_0 : T_0 < \infty, G(T_0) \leq G(0)$
- So, the Gittins Index passes its starting position at some point.
- We have $\forall a : a > k, G(a)$ is decreasing
- So, the Gittins Index keeps going down after that.
- As we start NBUE, and end with this property, by optimality of Gittins
- FCFS + FB(T_0)
- Additionally, we have the bound $T_0 > k$
Policy Derivation

- We have $\forall a : a < T_0, G(a) \geq G(0)$ and $\forall T_0 : T_0 < \infty, G(T_0) \leq G(0)$
- So, the Gittins Index passes its starting position at some point.
 - We have $\forall a : a > k, G(a)$ is decreasing
 - So, the Gittins Index keeps going down after that.
 - As we start NBUE, and end with this property, by optimality of Gittins
 - $\text{FCFS + FB}(T_0)$
 - Additionally, we have the bound $T_0 > k$
Policy Derivation

- We have $\forall a : a < T_0, G(a) \geq G(0)$ and $\forall T_0 : T_0 < \infty, G(T_0) \leq G(0)$
- So, the Gittins Index passes its starting position at some point.
- We have $\forall a : a > k, G(a)$ is decreasing
 - So, the Gittins Index keeps going down after that.
- As we start NBUE, and end with this property, by optimality of Gittins
 - FCFS + FB(T_0)
- Additionally, we have the bound $T_0 > k$
Policy Derivation

- We have $\forall a : a < T_0, G(a) \geq G(0)$ and $\forall T_0 : T_0 < \infty, G(T_0) \leq G(0)$.
- So, the Gittins Index passes its starting position at some point.
- We have $\forall a : a > k, G(a)$ is decreasing.
- So, the Gittins Index keeps going down after that.
- As we start NBUE, and end with this property, by optimality of Gittins.
- FCFS + FB(T_0)
- Additionally, we have the bound $T_0 > k$.

Matthew Maurer ()
Gittins Policy
CS 286.2b, 2009 20 / 25
Policy Derivation

- We have \(\forall a : a < T_0, G(a) \geq G(0) \) and \(\forall T_0 : T_0 < \infty, G(T_0) \leq G(0) \).
- So, the Gittins Index passes its starting position at some point.
- We have \(\forall a : a > k, G(a) \) is decreasing
- So, the Gittins Index keeps going down after that.
- As we start NBUE, and end with this property, by optimality of Gittins
 - FCFS + FB\((T_0)\)
 - Additionally, we have the bound \(T_0 > k \)
Policy Derivation

- We have $\forall a : a < T_0, G(a) \geq G(0)$ and $\forall T_0 : T_0 < \infty, G(T_0) \leq G(0)$
- So, the Gittins Index passes its starting position at some point.
- We have $\forall a : a > k, G(a)$ is decreasing
- So, the Gittins Index keeps going down after that.
- As we start NBUE, and end with this property, by optimality of Gittins
- FCFS + FB(T_0)
- Additionally, we have the bound $T_0 > k$
We have $\forall a : a < T_0, G(a) \geq G(0)$ and $\forall T_0 : T_0 < \infty, G(T_0) \leq G(0)$

So, the Gittins Index passes its starting position at some point.

We have $\forall a : a > k, G(a)$ is decreasing

So, the Gittins Index keeps going down after that.

As we start NBUE, and end with this property, by optimality of Gittins

FCFS + FB(T_0)

Additionally, we have the bound $T_0 > k$
Outline

1. Gittins Policy
 - Gittins Index
 - Gittins Policy Application

2. NBUE + DHR\((k)\) Distributions
 - Gittins Reduction to FCFS + FB\((\theta)\)
 - Gittins Index Properties
 - Policy Properties
 - Pareto Example
Qualification

- Up through k, NBUE (starts at zero, then jumps)
- After k, DHR
- Fits the requirements for this application of Gittins
Qualification

- Up through k, NBUE (starts at zero, then jumps)
- After k, DHR
- Fits the requirements for this application of Gittins
Qualification

- Up through k, NBUE (starts at zero, then jumps)
- After k, DHR
- Fits the requirements for this application of Gittins
Gittins Index
Summary

- When doing blind scheduling, Gittins Policy is optimal.
- The Gittins Policy is usually intractible.
- In our particular case, Gittins reduces to FCFS + FB(T_0) for NBUE + DHR(k).
Summary

- When doing blind scheduling, Gittins Policy is optimal.
- The Gittins Policy is usually intractible.
- In our particular case Gittins reduces to FCFS + FB(T_0) for NBUE + DHR(k).
Summary

- When doing blind scheduling, **Gittins Policy is optimal**.
- The **Gittins Policy is usually intractible**.
- In our particular case **Gittins reduces to FCFS + FB(\(T_0\)) for NBUE + DHR(k)**.
For Further Reading

M. Pinedo.

S. Aalto, U. Ayesta.
Optimal scheduling of jobs with a DHR tail in the M/G/1 queue.

J. Gittins.
Bandit Processes and Dynamic Allocation Indices.
For Further Reading

M. Pinedo.
Scheduling: Theory, Algorithms and Systems.

S. Aalto, U. Ayesta.
Optimal scheduling of jobs with a DHR tail in the M/G/1 queue.

J. Gittins.
Bandit Processes and Dynamic Allocation Indices.
For Further Reading

M. Pinedo.
Scheduling: Theory, Algorithms and Systems.

S. Aalto, U. Ayesta.
Optimal scheduling of jobs with a DHR tail in the M/G/1 queue.

J. Gittins.
Bandit Processes and Dynamic Allocation Indices.