Active Learning and Optimized Information Gathering

Lecture 13 – Submodularity (cont’d)

CS 101.2
Andreas Krause
Announcements

- **Homework 2**: Due Thursday Feb 19
- **Project milestone due**: Feb 24
 - 4 Pages, NIPS format: http://nips.cc/PaperInformation/StyleFiles
 - Should contain preliminary results (model, experiments, proofs, ...) as well as timeline for remaining work
 - Come to office hours to discuss projects!
- **Office hours**
 - Come to office hours before your presentation!
 - Andreas: **Monday 3pm-4:30pm**, 260 Jorgensen
 - Ryan: Wednesday 4:00-6:00pm, 109 Moore
Feature selection

- Given random variables Y, X_1, \ldots, X_n
- Want to predict Y from subset $X_A = (X_{i_1}, \ldots, X_{i_k})$

Want k most informative features:

$$A^* = \arg\max IG(X_A; Y) \text{ s.t. } |A| \leq k$$

where $IG(X_A; Y) = H(Y) - H(Y | X_A)$

Uncertainty before knowing X_A
Uncertainty after knowing X_A
Example: Greedy algorithm for feature selection

- **Given:** finite set V of features, utility function $F(A) = IG(X_A; Y)$
- **Want:** $A^* \subseteq V$ such that $A^* = \arg\max_{A} F(A)$ with $|A| \leq k$

NP-hard!

Greedy algorithm:
- Start with $A = \emptyset$
- For $i = 1$ to k
 - $s^* := \arg\max_{s} F(A \cup \{s\})$
 - $A := A \cup \{s^*\}$

How well can this simple heuristic do?
Key property: Diminishing returns

Selection A = {}
Selection B = \{X_2, X_3\}

Adding X_1 will help a lot!
Adding X_1 doesn't help much

New feature X_1

Submodularity:
For $A \subseteq B$, $F(A \cup \{s\}) - F(A) \geq F(B \cup \{s\}) - F(B)$

Theorem [Krause, Guestrin UAI ’05]: Information gain $F(A)$ in Naïve Bayes models is submodular!
Why is submodularity useful?

Theorem [Nemhauser et al. ‘78]

Greedy maximization algorithm returns A_{greedy}:

$$F(A_{\text{greedy}}) \geq (1 - 1/e) \max_{|A| \leq k} F(A)$$

~63%

- Greedy algorithm gives near-optimal solution!
- For info-gain: Guarantees best possible unless $P = NP$!
 [Krause, Guestrin UAI ’05]

Submodularity is an incredibly useful and powerful concept!
Monitoring water networks
[Krause et al, J Wat Res Mgt 2008]

- Contamination of drinking water could affect millions of people

- Place sensors to detect contaminations

- “Battle of the Water Sensor Networks” competition

Where should we place sensors to quickly detect contamination?
Model-based sensing

Utility of placing sensors based on model of the world

- For water networks: Water flow simulator from EPA
- \(F(A) = \text{Expected impact reduction placing sensors at } A \)

Model predicts Low impact

Theorem [Krause et al., J Wat Res Mgt '08]:

Impact reduction \(F(A) \) in water networks is submodular!

Set \(V \) of all network junctions

<table>
<thead>
<tr>
<th>Location</th>
<th>Sensor reduces impact through early detection!</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td></td>
</tr>
</tbody>
</table>

High impact reduction \(F(A) = 0.9 \)

Low impact reduction \(F(A) = 0.01 \)
Battle of the Water Sensor Networks Competition

- Real metropolitan area network (12,527 nodes)
- Water flow simulator provided by EPA
- 3.6 million contamination events
- Multiple objectives:
 - Detection time, affected population, ...
- Place sensors that detect well “on average”
What about worst-case?
[Krause et al., NIPS ’07]

Knowing the sensor locations, an adversary contaminates here!

Placement detects well on “average-case” (accidental) contamination

Very different average-case impact, Same worst-case impact

Where should we place sensors to quickly detect in the worst case?
Constrained maximization: Outline

Utility function $F(A)$

Selected set $A \subseteq Y$

Selection cost $C(A) \leq B$

Budget

Subset selection

Robust optimization

Complex constraints
Separate utility function F_i for each contamination i

$F_i(A) = \text{impact reduction by sensors } A \text{ for contamination } i$

Want to solve:

$$A^* = \arg\max_{|A| \leq k} \min_i F_i(A)$$

Each of the F_i is submodular.

Unfortunately, $\min_i F_i$ not submodular!

How can we solve this robust optimization problem?
How does the greedy algorithm do?

V = {试行, 葫芦, 苹果}
Can only buy k = 2

Optimal solution
Optimal score: 1

Hence we can’t find any approximation algorithm.
Or can we?

Greedy picks first
Then, can choose only 试行 or 葫芦
Greedy score: ε

➡️ Greedy does arbitrarily badly. Is there something better?

Theorem: The problem \(\max_{|A| \leq k} \min_i F_i(A) \) does not admit any approximation unless \(P = NP \)
If somebody told us the optimal value,

$$c^* = \max_{|A| \leq k} \min_i F_i(A)$$

can we recover the optimal solution A^*?

Need to find

$$A^* = \arg\min_{A} |A| \text{ such that } \min_i F_i(A) \geq c^*$$

Is this any easier?

Yes, if we relax the constraint $|A| \leq k$
Solving the alternative problem

Trick: For each F_i and c, define truncation

$$F'_{i,c}(A) = \min\{F_i(A), c\}$$

$$F'_{\text{avg},c}(A) = \frac{1}{m} \sum_i F'_{i,c}(A)$$

Remains submodular!

Problem 1 (last slide)

$$\min_{A} |A|$$

s.t. $\min_i F_i(A) \geq c$

Non-submodular ☹

Don’t know how to solve

Problem 2

$$\min_{A} |A|$$

s.t. $F'_{\text{avg},c}(A) \geq c$

Submodular!

But appears as constraint?

Same optimal solutions!
Solving one solves the other
Maximization vs. coverage

Previously: Wanted

\[A^* = \text{argmax } F(A) \text{ s.t. } |A| \leq k \]

Now need to solve:

\[A^* = \text{argmin } |A| \text{ s.t. } F(A) \geq Q \]

Greedy algorithm:

Start with \(A := \emptyset \);

While \(F(A) < Q \) and \(|A| < n \)

\[s^* := \text{argmax}_s F(A \cup \{s\}) \]

\[A := A \cup \{s^*\} \]

Theorem [Wolsey et al]: Greedy will return \(A_{\text{greedy}} \)

\[|A_{\text{greedy}}| \leq (1 + \log \max_s F(\{s\})) |A_{\text{opt}}| \]

For bound, assume \(F \) is integral.
If not, just round it.
Trick: For each F_i and c, define truncation

$$F'_{i,c}(\mathcal{A}) = \min\{F_i(\mathcal{A}), c\}$$

$$F'_{\text{avg},c}(\mathcal{A}) = \frac{1}{m} \sum_i F'_{i,c}(\mathcal{A})$$

Problem 1 (last slide)

$$\min_{\mathcal{A}} |\mathcal{A}|$$

s.t. $\min_{i} F_i(\mathcal{A}) \geq c$

Non-submodular 😞

Don’t know how to solve

Problem 2

$$\min_{\mathcal{A}} |\mathcal{A}|$$

s.t. $F'_{\text{avg},c}(\mathcal{A}) \geq c$

Submodular!

Can use greedy algorithm!
Back to our example

- Guess $c=1$
- First pick 🎸
- Then pick 🎸
 ➔ Optimal solution!

<table>
<thead>
<tr>
<th>Set A</th>
<th>F_1</th>
<th>F_2</th>
<th>$\min_i F_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>🎸</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>🎸</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>🍎</td>
<td>ϵ</td>
<td>ϵ</td>
<td>ϵ</td>
</tr>
</tbody>
</table>

How do we find c?

Do binary search!
Given: set V, integer k and monotonic SFs F_1, \ldots, F_m

Initialize $c_{\text{min}} = 0$, $c_{\text{max}} = \min_i F_i(V)$

Do binary search: $c = (c_{\text{min}} + c_{\text{max}}) / 2$

- Greedily find A_G such that $F'_{\text{avg},c}(A_G) = c$
- If $|A_G| \leq \alpha k$: increase c_{min}
- If $|A_G| > \alpha k$: decrease c_{max}

until convergence
Theoretical guarantees
[Krause et al, NIPS ‘07]

Theorem: The problem \(\max_{|A| \leq k} \min_i F_i(A) \)
does not admit any approximation unless \(P=NP \)

Theorem: \(SATURATE \) finds a solution \(A_S \) such that

\[
\min_i F_i(A_S) \geq OPT_k \text{ and } |A_S| \leq \alpha k
\]

where

\[
OPT_k = \max_{|A| \leq k} \min_i F_i(A)
\]

\[
\alpha = 1 + \log \max_s \sum_i F_i(\{s\})
\]

Theorem:
If there were a polytime algorithm with better factor \(\beta < \alpha \), then \(NP \subseteq DTIME(n^{\log \log n}) \)
Example: Lake monitoring

- Monitor pH values using robotic sensor transect

True (hidden) pH values

Prediction at unobserved locations

Use **probabilistic model** (Gaussian processes) to estimate prediction error

Where should we sense to **minimize our maximum error**?

Robust submodular optimization problem!

\[
\min_s \text{Var}(s) - \text{Var}(s \mid A)
\]

(often) submodular

[Das & Kempe ’08]
Comparison with state of the art

Algorithm used in geostatistics: *Simulated Annealing*

[Sacks & Schiller ’88, van Groeningen & Stein ’98, Wiens ’05,...]

7 parameters that need to be fine-tuned

SATURATE is competitive & 10x faster

No parameters to tune!
Results on water networks

60% lower worst-case detection time!

No decrease until all contaminations detected!
Worst- vs. average case

Given: Set V, submodular functions F_1, \ldots, F_m

<table>
<thead>
<tr>
<th>Average-case score</th>
<th>Worst-case score</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{ac}(A) = \frac{1}{m} \sum_{i} F_i(A)$</td>
<td>$F_{wc}(A) = \min_{i} F_i(A)$</td>
</tr>
</tbody>
</table>

Want to optimize both average- and worst-case score!

Can modify $SATURATE$ to solve this problem! 😊

- **Want:** $F_{ac}(A) \geq c_{ac}$ and $F_{wc}(A) \geq c_{wc}$
- **Truncate:** $\min\{F_{ac}(A), c_{ac}\} + \min\{F_{wc}(A), c_{wc}\} \geq c_{ac} + c_{wc}$
Worst- vs. average case

Can find good compromise between average- and worst-case score!
Constrained maximization: Outline

\[\max_{\mathcal{A} \subseteq \mathcal{Y}} F(\mathcal{A}) \]
subject to \[C(\mathcal{A}) \leq B \]

- Utility function
- Selected set
- Selection cost
- Budget
- Subset selection
- Robust optimization
- Complex constraints
Other aspects: Complex constraints

\[\max_A F(A) \text{ or } \max_A \min_i F_i(A) \] subject to

- So far: \[|A| \leq k \]
- In practice, more complex constraints:
 - Different costs: \[C(A) \leq B \]

Locations need to be connected by paths
[Chekuri & Pal, FOCS ’05]
[Singh et al, IJCAI ’07]

Sensors need to communicate (form a routing tree)

Lake monitoring

Building monitoring
Non-constant cost functions

For each \(s \in V \), let \(c(s) > 0 \) be its cost (e.g., feature acquisition costs, …)

Cost of a set \(C(A) = \sum_{s \in A} c(s) \) \((\text{modular function!})\)

Want to solve

\[
A^* = \arg\max F(A) \quad \text{s.t.} \quad C(A) \leq B
\]

Cost-benefit greedy algorithm:

Start with \(A := \emptyset \);

While there is an \(s \in V \setminus A \) \(\text{s.t.} \ C(A \cup \{s\}) \cdot B \)

\[
s^* = \arg\max_{s : C(A \cup \{s\}) \leq B} \frac{F(A \cup \{s\}) - F(A)}{c(s)}
\]

\[A := A \cup \{s^*\}\]
Performance of cost-benefit greedy

Want

$max_A F(A) \text{ s.t. } C(A) \leq 1$

<table>
<thead>
<tr>
<th>Set A</th>
<th>$F(A)$</th>
<th>$C(A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${a}$</td>
<td>2ε</td>
<td>ε</td>
</tr>
<tr>
<td>${b}$</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Cost-benefit greedy picks a.
Then cannot afford b!

\Rightarrow Cost-benefit greedy performs arbitrarily badly!
Cost-benefit optimization
[Wolsey ‘82, Sviridenko ’04, Leskovec et al ’07]

Theorem

- A_{CB}: cost-benefit greedy solution and
- A_{UC}: unit-cost greedy solution (i.e., ignore costs)

Then

$$\max \{ F(A_{\text{CB}}), F(A_{\text{UC}}) \} \geq \frac{1}{2} (1-1/e) \text{OPT}$$

Can still compute online bounds and speed up using lazy evaluations

Note: Can also get

- $(1-1/e)$ approximation in time $O(n^4)$ [Sviridenko ’04]
- Slightly better than $\frac{1}{2} (1-1/e)$ in $O(n^2)$ [Wolsey ‘82]
Example: Cascades in the Blogosphere
[Leskovec, Krause, Guestrin, Faloutsos, VanBriesen, Glance ‘07]

Which blogs should we read to learn about big cascades early?

Learn about story after us!
Water vs. Web

In both problems we are given:
- Graph with nodes (junctions / blogs) and edges (pipes / links)
- Cascades spreading dynamically over the graph (contamination / citations)

Want to pick nodes to detect big cascades early

In both applications, utility functions submodular 😊
[Generalizes Kempe et al, KDD ’03]
Performance on Blog selection

Outperforms state-of-the-art heuristics
700x speedup using submodularity!
Cost of reading a blog

- Naïve approach: Just pick 10 best blogs
- Selects big, well known blogs (Instapundit, etc.)
- These contain many posts, take long to read!

Cost-benefit optimization picks summarizer blogs!

Cost(A) = Number of posts / day

Cost/benefit analysis

Cascades captured

Cost ignoring cost
Predicting the “hot” blogs

- Want blogs that will be informative in the future
- Split data set; train on historic, test on future

Blog selection “overfits” to training data!

Poor generalization!

Let’s see what goes wrong here.

Cost(A) = Number of posts / day
Robust optimization

“Overfit” blog selection \(\mathbf{A} \)

\[F_i(\mathbf{A}) = \text{detections in interval } i \]

Optimize worst-case

“Robust” blog selection \(\mathbf{A}^* \)

\[\mathbf{A}^* = \arg\max \min_i F_i(\mathbf{A}) \text{ s.t. } |\mathbf{A}| \leq k \]

Robust optimization \(\Leftrightarrow \) Regularization!
Predicting the “hot” blogs

Greedy on historic
Test on future
Robust solution
Test on future

Greedy on future
Test on future
“Cheating”

Cascades captured

Cost(A) = Number of posts / day

50% better generalization!
max_A F(A) or max_A \min_i F_i(A) subject to

- So far: \(|A| \leq k \)
- In practice, more complex constraints:
 - Different costs: \(C(A) \leq B \)

Locations need to be connected by paths
[Chekuri & Pal, FOCS ’05]
[Singh et al, IJCAI ’07]

Sensors need to communicate (form a routing tree)

Lake monitoring

Building monitoring
Naïve approach: Greedy-connect

- Simple heuristic: **Greedily** optimize submodular utility function $F(A)$
- Then *add* nodes to minimize communication cost $C(A)$

Want to find optimal tradeoff between information and communication cost
The pSPIEL Algorithm
[Krause, Guestrin, Gupta, Kleinberg IPSN 2006]

- **pSPIEL**: Efficient nonmyopic algorithm

 (padded Sensor Placements at Informative and cost-Effective Locations)

- Decompose sensing region into small, well-separated clusters
- Solve cardinality constrained problem **per cluster** (greedy)
- Combine solutions using k-MST algorithm
Guarantees for \textit{pSPIEL}

[Krause, Guestrin, Gupta, Kleinberg IPSN 2006]

\textbf{Theorem:}
\textit{pSPIEL} finds a tree T with

\begin{align*}
\text{submodular utility} & \quad F(T) \geq \Omega(1) \quad \text{OPT}_F \\
\text{communication cost} & \quad C(T) \leq O(\log |V|) \quad \text{OPT}_C
\end{align*}
What you should know

- Many important objective functions in Bayesian experimental design are monotonic & submodular
 - Entropy
 - Information gain*
 - Variance reduction*
 - Detection likelihood / time

- Greedy algorithm gives near-optimal solution
- Can also solve more complex problems
 - Connectedness-constraints (trees/paths)
 - Robustness

*under certain assumptions