The Epoch-Greedy Algorithm for Contextual Multi-armed Bandits

Authors: John Langford, Tom Zhang
Presented by: Ben Flora
Overview

• Bandit problem
• Contextual bandits
• Epoch-Greedy algorithm
Overview

• Bandit problem
• Contextual bandits
• Epoch-Greedy algorithm
Bandits

• K arms each arm i
 - Wins (reward 1) with probability p_i
 - Loses (reward 0) with probability $1-p_i$

• Exploration vs. Exploitation
 - Exploration is unbiased
 - Exploitation is biased by exploration only

• Regret
 - Max return – Actual return
Web Example

• Some number of ads that can be displayed
 – Each ad translates to an arm

• Each ad can be clicked on by a user
 – If clicked reward 1 if not reward 0

• Want to have adds clicked as often as possible
 – This will make the most money
Overview

• Bandit problem
• Contextual bandits
• Epoch-Greedy algorithm
Contextual Bandits

• Add Context to the bandit problem
 – Information aiding in arm choosing
 – Helps know which arm is best
• The rest follows the Bandit problem
• Want to find optimal solution
• More useful than regular bandits
Now we have user information
 – A user profile
 – Search Query
 – A users preferences
Use this information to choose an ad
 – Better chance of choosing an ad that is clicked on
Overview

• Bandit problem
• Contextual bandits
• Epoch-Greedy algorithm
Epoch-Greedy Overview

Exploration (unbiased input) -> Black Box: Transforms Input to hypotheses -> Hypotheses (best arm)

Context

Similar idea to the papers we saw on Thursday
Exploration

• Look at a fixed time horizon
 – Time horizon is the total number of pulls
• Choose a number of Exploration steps

\[T \]
\[n \text{ steps} \quad \text{Exploration} \quad \text{T-n Steps} \quad \text{Exploitation} \]
Minimizing Regret

- No explore regret = T
- All exploit regret = T
- Some minimum between those points
Creating a Hypotheses

- Simple two armed case
- Remember binary thresholds
- Want to learn the threshold value

If $x < t$: pick arm 1
If $x > t$: pick arm 2
Creating a Hypotheses (Cont.)

• Want to be within ε of the threshold
 – Need $\approx O(1/\varepsilon)$

• As the function gets more complex
 – Need $\approx O((1/\varepsilon)\times C)$
 – C denotes how complex the function is
 – A quick note for those of you who took 156 the C is similar to VC dimension
Epoch

- Don’t always know the time horizon
- Append groupings of known time horizons
 - Repeat until time actually ends
- This specific paper has chosen a single exploration step at the beginning of each epoch
Epoch-Greedy Algorithm

- Do a single step of exploration
 - Begin creating an unbiased vector of inputs to create the hypotheses
 - Observe context information
- Add the learned information to past exploration and create a new hypotheses
 - This uses the contextual data and exploration
- For a set number of steps exploit the hypotheses arm
Review Using Web Example

- Have a variety of ads that can be shown
 - Sports
 - Movie
 - Insurance
Review (Cont)

- Search Query
 - Golf Club Repair
 - Randomly choose
 - Clicked

- Search Query
 - Car Body Repair
 - See Repair and Car
 - Not Clicked
Review (Cont.)

- Search Query
 - Horror Movie
 - Randomly choose
 - Clicked

- Search Query
 - Sheep Movie
 - See Sheep and Movie
 - Clicked