Online Optimization in X-Armed Bandits

CS101.2
January 20th, 2009
Paper by S. Bubeck, R. Munos, G. Stoltz, C. Szepersvári
Slides by C. Chang
Review of Bandits

- Started with k arms
 - Integral, finite domain of arms
 - General idea: Keep track of average and confidence for each arm
 - Expected regret using $\text{UCB}_1 = O(\log n)$
Review of Bandits

- Last week
- Bandit arms against “adversaries”
 - Oblivious
 - $O(n^{2/3})$
 - Adaptive
 - $O(n^{3/4})$
Extending the Arms

- What about infinitely many arms?
- Draw arms from $X = [0, 1]^D$
 - D-dimensional vector of values from 0 to 1
- Mean-payoff function, f, maps from $X \rightarrow \mathbb{R}$
- No adversaries (fixed payoffs)
Extending the Arms

- What if there are no restrictions on the shape of f?
Extending the Arms

- What if there are no restrictions on the shape of f?
- Then we don’t know anything about arms we haven’t pulled
Extending the Arms

- What if there are no restrictions on the shape of f?
- Then we don’t know anything about arms we haven’t pulled
- With infinitely many arms, this means we can’t do anything!
Extending the Arms

- Okay, so no continuity at all goes too far
- Generalize the mean-payoff function function to be “pretty smooth”
- That way, we can (hopefully) get information about a neighborhood of arms from a single pull
- We will use Lipschitz continuity
Lipschitz Continuity

- Intuitively, the slope of the function is bounded.
- That is, it never increases or decreases faster than a certain rate.
- This seems like it can give us information about an area with a single pull.
Lipschitz Continuity

- Formal definition:
- Function $f(x)$ is Lipschitz continuous if,
- Given a dissimilarity function, $d(x,y)$,
- $f(x) - f(y) \leq k \times d(x,y)$
- k is the Lipschitz constant
Lipschitz Continuity

- For a function f with a certain constant k, we call the function k-Lipschitz.
- We’ll assume 1-Lipschitz
 - For another k, we can just adjust the payoffs to make the function 1-Lipschitz.
 - We’re really just concerned with relative performance versus other strategies on the same f.

Lipschitz Continuity

Function will stay inside the green cone
(Graphic taken with permission from Wikipedia under GNU Free Documentation License 1.2)
Lipschitz Functions

- Examples of functions that are Lipschitz:
Lipschitz Functions

- Examples of functions that are Lipschitz:
 - $f(x) = \sin(x)$
 - $f(x) = |x|$
 - $f(x,y) = x + y$
Lipschitz Functions

- Examples of functions that are Lipschitz:
 - $f(x) = \sin(x)$
 - $f(x) = |x|$
 - $f(x,y) = x + y$

- And functions that aren’t:
Lipschitz Functions

- Examples of functions that are Lipschitz:
 - $f(x) = \sin(x)$
 - $f(x) = |x|$
 - $f(x,y) = x + y$

- And functions that aren’t:
 - $f(x) = x^2$
 - $f(x) = x / (x - 3)$
Application

- Why would we need a bandit arm strategy for non-linear mean-payoff functions?
Application

- One example: Modeling airflow over a plane wing
- A parameter vector is an arm
- Pulling an arm is costly
 - Difficult to actually calculate (computer models, PDEs…)
- Still want to maximize some kind of result across the arms
Developing an Algorithm

- Okay, so it’s useful
- What kind of algorithm should we use?
 - Random?
 - We’ve seen how well this works out
- Other obvious approaches are less applicable with infinitely many arms…
Developing an Algorithm

- We can reuse the ideas from the UCB₁ algorithm
Adjustments Needed

• Not discrete arms, but a continuum
 ◦ We will have need a UCB for all arms over the arm-space

• We can get some confidence about any pulled arm’s neighbors because of Lipschitz
Stumbling Around

- Not discrete arms, but a continuum...
Stumbling Around

- New points affect their neighbors

\[[0] \times D \quad \quad \quad [1] \times D \]
Adjustments Needed

- We can also sharpen our estimates from nearby measurements
- Retain “optimism in the face of the unknown”
- General idea gotten…but how do we actually do it?
The Algorithm!

- Split the arm-space into regions
- Every time you pick an arm from a region, divide into more precise regions
- Keep track of how good every region is through results of itself and its children.
Setup for the Algorithm

- To remember regions, use a “Tree of Coverings”
- A node in the tree with height h and row-index i is represented as $P_{h,i}$ or just (h,i)
 - The children of $P_{h,i}$ are $P_{h+1,2i-1}$ and $P_{h+1,2i}$
 - The whole arm-space $X = P_{0,l}$
- The children of a node cover their parent
Setup for the Algorithm

- We always choose a leaf node, then add its children to the tree.
- Each node has a “score” – we pick a new leaf by going down the tree, going to the side with the greater score.
- Score:

\[B_{h,i}(n) = \min\{U_{h,i}(n), \max_{\text{children}}[B_{\text{child}}]\} \]

where \(U_{h,i}(n) \) is the upper confidence bound for the tree node \((h,i)\)
Setup for the Algorithm

- One more caveat – For any node \((h,i)\), the diameter (determined by \(d\), the dissimilarity function) of the smallest circle that bounds the node is less than \(\nu \rho^h\) for some parameters \(\nu, \rho\).

- A little more formally,

\[
U_{h,i}(n) = \mu_{h,i}(n) + \text{Chernoff} + \nu \rho^h
\]

\[
(\text{Chernoff} = \sqrt{\frac{2 \ln n}{N_{h,i}(n)}})
\]
Setup for the Algorithm

- Score:
 \[B_{h,i}(n) = \min\{U_{h,i}(n), \max_{\text{children}}[B_{\text{child}}]\} \]

- What if you have no children?
Setup for the Algorithm

- **Score:**
 \[B_{h,i}(n) = \min\{U_{h,i}(n), \max_{\text{children}}[B_{\text{child}}]\} \]
- What if you haven’t been picked yet?
- Optimism in the face of uncertainty!
 - Set B to infinity
Algorithm Example

U=3.0, B=3.0

U=2.5, B=2.5

U=3.5, B=3.5

B=\infty

B=\infty

B=\infty

B=\infty
Algorithm Example

- U=3.0, B=3.0
 - U=2.5, B=2.5
 - B=∞
 - B=∞
 - U=3.5, B=3.5
 - B=∞
 - B=∞
Algorithm Example

U = 3.0, B = 3.0

U = 2.5, B = 3.5

U = 3.5, B = 2.5

B = ∞

Y = 0.5

f
Algorithm Example

U = 2.7, B = 2.5

U = 2.5, B = 2.5

B = \infty

U = 2.4, B = 2.4

U = 1.3, B = 1.3

B = \infty

B = \infty

Y = 0.5

f
Algorithm Example
Observations

- Exploration comes from the pessimism of the B-score and the optimism of the unknown
- Exploitation comes from the optimism of the B-score and fast elimination of bad parts of the function
Numerical Results

• The following is taken from another talk by the author, Sébastien Bubeck
Numerical Results

\[n = 1000 \]

\[n = 10000 \]
Regret Analysis

- Not going to go through all the math
 - If want, read the paper...
- Pretty similar to regret analysis of UCB₁
 - Number of times a bad arm is chosen is proportional to $\log(n)$ and inverse to difference to best arm
 - Add a lot of mess from the Lipschitzness
 - Actually, we only require “weak-Lipschitz”, which is a sort of one-sided Lipschitz near the best arms
Regret Analysis

- Main result:
 \[E(R_n) \leq C(d') \ n^{(d'+1)/(d'+2)} (\ln n)^{1/(d'+2)} \]
 - \(C \) is some constant
 - \(d' \) is any number greater than \(d \), and in most cases, can be equal to \(d \)
Regret Analysis

- \(E(R_n) \leq C(d') \ n^{(d'+1)/(d'+2)} (\ln n)^{1/(d'+2)} \)
- For high \(d \), we get closer and closer to linear...
 - "The Curse of Dimensionality"
- This is proven to be tight! Tight!
Dissimilarity Functions

- We’ve just been using straight distance
- d can be any metric
 - $d(x,y) = 0$ iff $x = y$
 - d must be symmetric
 - Triangle inequality
- With creative dissimilarity functions, this is surprisingly powerful!
Powerful Dissimilarities

- Suppose we go back to the example of online ads
- Ads sell all sorts of products (not quite infinite, but still more than we’d want to try individually!
- Can’t we get information from knowing that some ads are related?
Online Product Sales

- Dissimilarity function should measure how, well, dissimilar two ads are.
- Can take the tree, weight the edges as, say, \(l/h \), and compute distance.
- Can now use the hierarchical algorithm!
- New dissimilarity functions add a lot of mileage...