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The Setup

Optimization:
* Model the problem (objective, constraints)
* Pick best decision from a feasible set.
Learning:
 Model the problem (objective, hypothesis class)
* Pick best hypothesis from a feasible set.
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Online Learning/Optimization

Choose an action
r, € X Get f;(x:) and feedback

ftIX%[O,]_]

« Same feasible set X in each round t
» Different Reward Models:
» Stochastic, Arbitrary but Oblivious, Adaptive and Arbitrary
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Concrete Example: Commuting

Home

Pick a path x; from home to school.

Pay cost fi(z:) == ) .., ctl€)
Then see all edge costs for that round.

Dealing with Limited Feedback: Ilater in the course.
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Other Applications

» Sequential decision problems

» Streaming algorithms for optimization/learning
with large data sets

 Combining weak learners into strong ones
("boosting”)

e Fast approximate solvers for certain classes of
convex programs

* Playing repeated games
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Binary prediction with a perfect
expert
* n hypotheses (“experts™) hi, ho, ..., h,
 Guaranteed that some hypothesis is perfect.

 Each round, get a data point p; and
classifications h;(p;) € {0,1}

« QOutput binary prediction x;, observe correct label
 Minimize # mistakes

Any Suggestions?
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A Weighted Majority Algorithm

e Each expert “votes” for it's classification.

* Only votes from experts who have never been
wrong are counted.

* Go with the majority
# mistakes M < log,(n)

Weights w;; = I(h; correct on first ¢ rounds ).
Wt — Zz Wit

W() — N, WT > 1

Mistake on round ¢ implies Wy, < W, /2

So 1 < Wrp <Wy/2M =n/2M
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Weighted Majority
[Littlestone & Warmuth '89]
What if there's no perfect expert?

 Each expert /i has a weight w(i), “votes” for it's
classification in {-1, 1}.

Go with the weighted majority, predict sign(>; w; x; ).
Halve weights of wrong experts. Let m = # mistakes of
best expert. How many mistakes M do we make?

Weights Wit = (1/2)( # mistakes by ¢ on first ¢ rounds)
Let Wt = ZZ Wit

Note Wy =n, Wp > (1/2)™

Mistake on round ¢ implies W; 1 < %Wt

So (1/2)™ < Wr < Wy(3/4)M =n - (3/4)M

Thus (4/3)™ < n-2™ and M < 2.41(m + logy(n)).
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Can we do better?

M < 2.41(m + log,(n))

Experts\Time 1 2 3 4
er=-1 0 1 0 1
2=1 1 0 1 0

* No deterministic algorithm can get M < 2m.
 \What if there are more than 2 choices?
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Regret

“Maybe all one can do is hope to end up with the right regrets.” — Arthur Miller

 Notation: Define loss or cost functions ¢; and

define the regret of X1, Xo, ... , X7 as
T T
Rr = th(xt) — th(a:*)
t=1 t=1

where z* = argmin_ Zle ct(x)

A sequence has “no-regret” if Ry = o(T).

e Questions:

 How can we improve Weighted Majority?
 What is the lowest regret we can hope for?
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The Hedge/WMR Algorithm*

[Freund & Schapire '97]

Hedge(e) pe(2) = wi/ ijt

Initialize w;g = 1 for all 7. j

In each round ¢:
Choose expert e; from categorical distribution py
Select x; = x(eq, t), the advice/prediction of e;.
For each 7, set w; 141 = wi (1 — e)ct(@(eist))

 How does this compare to WM?

* Pedantic note: Hedge is often called “Randomized Weighted Majority”, and abbreviated “WMR?”,
though WMR was published in the context of binary classification, unlike Hedge.
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The Hedge/WMR Algorithm

Hedge(e) pe () = wi/ ijt
Initialize w;p = 1 for all 2. j

In each round ¢:

Choose expert e; from categorical distribution p;
Select x, = x(es,t), the advice/prediction of e;.
[For each i, set w; 141 = wi (1 — e)ct(m(ei’t)) ]

Randomization

Influence shrinks exponentially with cumulative loss.

Intuitively: Either we do well on a round, or total weight drops,
and total weight can't drop too much unless every expert is lousy.
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Hedge Performance /%

Theorem: Let x1,x2,... be the choices of Hedge(¢). Then

E _ET:Ct(ft)_ < (1 ! )OPTT | In(n)

— € €
t=1

where OPT 7 := min; Zle ce(x(e;,t)).

If e = (\/ln )/0 PT) the regret is ©(1/0PT In(n))
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Hedge Analysis 2

Intuitively: Either we do well on a round, or total weight drops,
and total weight can't drop too much unless every expert is lousy.

Let Wy :==> . wi. Then Wy =n and Wry1 > (1 — e)OPT.

Wipr = sz’t(l — )it (1)
=3 Wp(i)(1 — )@ (def of pe(i)] (2)

< S Wipdi) (L e-cle)) - Bomouts ) (3

then (1+z)" <1+47rx
= Wi (1 —e-Elei(zt)]) (4)

< Wi -exp (—e - E[c(x¢)]) 1—z<e™™ (5)
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Hedge Analysis peT)

Wri1/Wo < exp <—€ZE [Ct(xt)]>

t=1

Wo/Wry1 > exp (6215 [Ct(ﬂft)])

Recall Wy =n and Wpri1 > (1 — e)OPT.

K th(ﬂﬁt) Slln( = >§1n(n)—OPT'ln(1_€)

= € Wriq € €
In(n) OPT
€ 1 —¢
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Lower Bound

If e = (\/ln )/0 PT) the regret is ©(1/0PT In(n))
Can we do better?

Let c:(x) ~ Bernoulli(1/2) for all x and ¢.

Let Z; := Zle ce(x(e;,t)).
Then Z; ~ Bin(T',1/2) is roughly normally distributed,

with o = %\/T
P|Z; < u— ko| =exp (—@(kQ))

We get about pu = T'/2, best choice is likely
to get u — O(y/T'In(n)) = u — O(y/0PT In(n)).
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What have we shown?

» Simple algorithm that learns to do nearly as
well as best fixed choice.

 Hedge can exploit any pattern that the best choice
does.

 Works for Adaptive Adversaries.

» Suitable for playing repeated games. Related ideas
appearing in Algorithmic Game Theory literature.
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Related Questions

* Optimize and get no-regret against richer classes of
strategies/experts:
— All distributions over experts
— All sequences of experts that have K transitions [Auer et al '02]

— Various classes of functions of input features [Blum & Mansour '05]
* E.g., consider time of day when choosing driving route.

— Arbitrary convex set of experts, metric space of
experts, etc, with linear, convex, or Lipschitz costs.
[Zinkevich '03, Kleinberg et al '08]

— All policies of a K-state initially unknown Markov
Decision Process that models the world. [Auer et al '08]

- Arbitrary sets of strategies in R" with linear costs that
we Can optimize offline. [Hannan'57, Kalai & Vempala '02]
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Related Questions

e Other notions of regret (see e.g., [Blum & Mansour '05])

 Time selection functions:
- get low regret on mondays, rainy days, etc.
* Sleeping experts:

— if rule “if(P) then predict Q" is right 90% of the time it
applies, be right 89% of the time P applies.

 Internal regret & swap regret:

- If you played x1i, ..., x7 then have no regret against
g(xl), cens g(xT) for every g:X—X
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Sleeping Experts g((f(ﬁ’i
[Freund et al '97, Blum '97, Blum & Mansour '05]

o if rule “if(P) then predict Q" is right 90% of the time it applies, be
right 89% of the time P applies. Get this for every rule
simultaneously.

» |dea: Generate lots of hypotheses that “specialize” on certain
iInputs, some good, some lousy, and combine them into a great
classifier.

 Many applications:
« Document classification, Spam filtering, Adaptive Uis, ...
- if ("physics” in D) then classify D as “science”.
* Predicates can overlap.
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Sleeping Experts

* Predicates can overlap

« E.g., predict college major given the classes C you're
enrolled in?

- if(ML-101, CS-201 in C) then CS
- if(ML-101, Stats-201 in C) then Stats

 What do we predict for students enrolled in ML-101, CS-201,
and Stats-201?

21
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Sleeping Experts
[Algorithm from Blum & Mansour '05]

SleepingExperts(3, £, F)
Input: 8 € (0,1), experts £, time selection functions F
Initialize w? r=1ltorallecé, feF.
In each round ¢:
Let wg =), ( Jwy ;-
Let Wt =" w!
Let pt = w?/ Wt
Choose expert e; from categorical distribution p?

Select x; = x (e, 1), the advice/prediction of e;.
Foreachec &, f € F

24}1 _ wg’fﬂf(t)(ct(e)_ﬁﬂ[ct(et)])
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t+1 _
We,r —

Ensures total sum of weights
can never increase.

e?
t>0

Sleeping Experts

[Algorithm from Blum & Mansour '05]

wz)fﬁf(t)(ct(e)—ﬁ

Slce(et)])

e, f

,wT _ H 6f(t)(ct(€)—5E[Ct(€t)])

_ G s olF(B)(er(e)—BE[ec(en)))]

< nm

Zw;f < nm for all ¢
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Sleeping Experts Performance /ﬁ(\

Let n = |&|,m = |F|. Fix T € N.
Let C(e, f) := 3y [(t) - ci(e)

Let Caig(f) := 301, f(t) - ce(er)
Then forallec &, f € F

1
E [Cag(1)] < 5 (Cle, f) +loga 5 (nm)

If 3 =1—€is close to 1,

log, (nm
5[Cue(£)] = (14 ©() Cle. ) + © (2E22) )
Optimizing yields a regret bound of

O(1/C(e, f)log(nm) + log(nm)).
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