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Online Algorithms:

Learning & Optimization with No Regret.
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Daniel Golovin
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Optimization: 
● Model the problem (objective, constraints)
● Pick best decision from a feasible set.

Learning:
● Model the problem (objective, hypothesis class)
● Pick best hypothesis from a feasible set.

The Setup
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Online Learning/Optimization

Choose an action 
Get ft(xt) and feedback

● Same feasible set X in each round t
● Different Reward Models:  

● Stochastic, Arbitrary but Oblivious, Adaptive and Arbitrary  

ft : X ! [0; 1]
xt 2 X
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Concrete Example: Commuting

Pick a path xt from home to school.
Pay cost ft(xt) :=

P
e2xt ct(e)

Then see all edge costs for that round.
Dealing with Limited Feedback:   later in the course.
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Other Applications

● Sequential decision problems
● Streaming algorithms for optimization/learning 

with large data sets
● Combining weak learners into strong ones 

(“boosting”)
● Fast approximate solvers for certain classes of 

convex programs
● Playing repeated games
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Binary prediction with a perfect 
expert

● n hypotheses (“experts”) 
● Guaranteed that some hypothesis is perfect. 
● Each round, get a data point pt and  

classifications
● Output binary prediction xt, observe correct label

● Minimize # mistakes

h1; h2; : : : ; hn

hi(pt) 2 f0; 1g

Any Suggestions?



  7CS/CNS/EE 253

A Weighted Majority Algorithm

● Each expert “votes” for it's classification.
● Only votes from experts who have never been 

wrong are counted.
● Go with the majority

# mistakes M · log2(n)
Weights wit = I(hi correct on ¯rst t rounds ).
Wt =

P
iwit.

W0 = n, WT ¸ 1
Mistake on round t implies Wt+1 ·Wt=2
So 1 ·WT ·W0=2

M = n=2M
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● Each expert i has a weight w(i), “votes” for it's 
classification in {-1, 1}.

Go with the weighted majority, predict sign(∑i wi xi ).  
Halve weights of wrong experts.  Let m = # mistakes of 
best expert.  How many mistakes M do we make?

What if there's no perfect expert?

Weighted Majority
[Littlestone & Warmuth '89]

Weights wit = (1=2)( # mistakes by i on r̄st t rounds) .
Let Wt :=

P
iwit.

Note W0 = n, WT ¸ (1=2)m

Mistake on round t implies Wt+1 · 3
4Wt

So (1=2)m ·WT ·W0(3=4)M = n ¢ (3=4)M
Thus (4=3)M · n ¢ 2m and M · 2:41(m+ log2(n)).
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Experts\Time 1 2 3 4
0 1 0 1
1 0 1 0

Can we do better?
M · 2:41(m+ log2(n))

e1 ´ ¡1

e2 ´ 1

● No deterministic algorithm can get M < 2m. 
● What if there are more than 2 choices?  
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● Notation:  Define loss or cost functions ct and 
define the regret of x1, x2, ... , xT  as

RT =
TX

t=1

ct(xt) ¡
TX

t=1

ct(x
¤)

where x¤ = argminx2X
PT

t=1 ct(x)

● Questions:
● How can we improve Weighted Majority?
● What is the lowest regret we can hope for?

A sequence has \no-regret" if RT = o(T ).

Regret
“Maybe all one can do is hope to end up with the right regrets.” – Arthur Miller
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The Hedge/WMR Algorithm*

pt(i) := wit=
X

j

wjtHedge(²)
Initialize wi0 = 1 for all i.
In each round t:

Choose expert et from categorical distribution pt
Select xt = x(et; t), the advice/prediction of et.
For each i, set wi;t+1 = wit(1 ¡ ²)ct(x(ei;t))

● How does this compare to WM? 

* Pedantic note: Hedge is often called “Randomized Weighted Majority”, and abbreviated “WMR”, 
   though WMR was published in the context of binary classification, unlike Hedge.

[Freund & Schapire '97]
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The Hedge/WMR Algorithm

Hedge(²)
Initialize wi0 = 1 for all i.
In each round t:

Choose expert et from categorical distribution pt
Select xt = x(et; t), the advice/prediction of et.
For each i, set wi;t+1 = wit(1 ¡ ²)ct(x(ei;t))

pt(i) := wit=
X

j

wjt

Randomization

Influence shrinks exponentially with cumulative loss.
Intuitively:  Either we do well on a round, or total weight drops, 
and total weight can't drop too much unless every expert is lousy.
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Hedge Performance
Theorem: Let x1; x2; : : : be the choices of Hedge(²). Then

E

"
TX

t=1

ct(xt)

#
·
µ

1

1 ¡ ²

¶
OPTT +

ln(n)

²

where OPTT := mini
PT

t=1 ct(x(ei; t)).

If ² = £
³p

ln(n)=OPT
´
, the regret is £(

p
OPT ln(n))
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Hedge Analysis
Intuitively:  Either we do well on a round, or total weight drops, 
and total weight can't drop too much unless every expert is lousy.

[def of pt(i)] 

[Bernoulli's ineq]
If x > ¡1; r 2 (0; 1)
then (1 + x)r · 1 + rx

[1 ¡ x · e¡x]

Wt+1 =
X

i

wit(1 ¡ ²)ct(xit) (1)

=
X

i

Wtpt(i)(1 ¡ ²)ct(xit) (2)

·
X

i

Wtpt(i) (1 ¡ ² ¢ ct(xit)) (3)

= Wt (1 ¡ ² ¢ E [ct(xt)]) (4)

·Wt ¢ exp (¡² ¢ E [ct(xt)]) (5)

Let Wt :=
P

i wit. Then W0 = n and WT+1 ¸ (1 ¡ ²)OPT.
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Hedge Analysis

· ln(n)

²
+
OPT
1 ¡ ²

WT+1=W0 · exp

Ã
¡²

TX

t=1

E [ct(xt)]

!

W0=WT+1 ¸ exp

Ã
²
TX

t=1

E [ct(xt)]

!

Recall W0 = n and WT+1 ¸ (1 ¡ ²)OPT.

E

"
TX

t=1

ct(xt)

#
· 1

²
ln

µ
W0

WT+1

¶
· ln(n)

²
¡ OPT ¢ ln(1 ¡ ²)

²
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Lower Bound

If ² = £
³p

ln(n)=OPT
´
, the regret is £(

p
OPT ln(n))

Can we do better?

P [Zi · ¹¡ k¾] = exp
¡
¡£(k2)

¢

Let ct(x) » Bernoulli(1/2) for all x and t.

Let Zi :=
PT
t=1 ct(x(ei; t)).

Then Zi » Bin(T; 1=2) is roughly normally distributed,
with ¾ = 1

2

p
T .

We get about ¹ = T=2, best choice is likely
to get ¹¡ £(

p
T ln(n)) = ¹¡ £(

p
OPT ln(n)).
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What have we shown?

● Simple algorithm that learns to do nearly as 
well as best fixed choice.
● Hedge can exploit any pattern that the best choice 

does.

● Works for Adaptive Adversaries.
● Suitable for playing repeated games.  Related ideas 

appearing in Algorithmic Game Theory literature.

● Simple algorithm that learns to do nearly as 
well as best fixed choice.
● Hedge can exploit any pattern that the best choice 

does.

● Works for Adaptive Adversaries.
● Suitable for playing repeated games.  Related ideas 

appearing in Algorithmic Game Theory literature.



  18CS/CNS/EE 253

Related Questions
● Optimize and get no-regret against richer classes of 

strategies/experts:
– All distributions over experts 
– All sequences of experts that have K transitions [Auer et al '02]

– Various classes of functions of input features [Blum & Mansour '05]
● E.g., consider time of day when choosing driving route.

– Arbitrary convex set of experts, metric space of 
experts, etc, with linear, convex, or Lipschitz costs. 
[Zinkevich '03, Kleinberg et al '08]

– All policies of a K-state initially unknown Markov 
Decision Process that models the world. [Auer et al '08]

– Arbitrary sets of strategies in        with linear costs that 
we can optimize offline. [Hannan'57, Kalai & Vempala '02]

Rn
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Related Questions

● Other notions of regret  (see e.g., [Blum & Mansour '05])

● Time selection functions: 
– get low regret on mondays, rainy days, etc.

● Sleeping experts:  
– if rule “if(P) then predict Q” is right 90% of the time it 

applies, be right 89% of the time P applies.
● Internal regret & swap regret:

– If you played x1, ..., xT then have no regret against 

g(x1), ..., g(xT) for every g:X→X
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Sleeping Experts
● if rule “if(P) then predict Q” is right 90% of the time it applies, be 

right 89% of the time P applies.  Get this for every rule 
simultaneously.

● Idea: Generate lots of hypotheses that “specialize” on certain 
inputs, some good, some lousy, and combine them into a great 
classifier.

● Many applications:

● Document classification, Spam filtering, Adaptive Uis, ...

– if (“physics” in D) then classify D as “science”.
● Predicates can overlap.  

[Freund et al '97, Blum '97, Blum & Mansour '05]
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Sleeping Experts

● Predicates can overlap
● E.g., predict college major given the classes C you're 

enrolled in?

– if(ML-101, CS-201 in C) then CS
– if(ML-101, Stats-201 in C) then Stats

● What do we predict for students enrolled in ML-101, CS-201, 
and Stats-201?
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Sleeping Experts

SleepingExperts(¯, E , F)
Input: ¯ 2 (0; 1), experts E, time selection functions F
Initialize w0e;f = 1 for all e 2 E; f 2 F .
In each round t:

Let wte =
P
f f(t)w

t
e;f .

Let W t =
P
e w

t
e.

Let pte = wte=W
t.

Choose expert et from categorical distribution pt

Select xt = x(et; t), the advice/prediction of et.
For each e 2 E; f 2 F

[Algorithm from Blum & Mansour '05] 

wt+1e;f = wte;f¯
f(t)(ct(e)¡¯E[ct(et)])
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Sleeping Experts
[Algorithm from Blum & Mansour '05] 

wt+1e;f = wte;f¯
f(t)(ct(e)¡¯E[ct(et)])

Ensures total sum of weights 
can never increase.

X

e;f

wte;f · nm for all t

wTe;f =
Y

t¸0
¯f(t)(ct(e)¡¯E[ct(et)])

= ¯
P

t¸0[f(t)(ct(e)¡¯E[ct(et)])]

· nm
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Sleeping Experts Performance
Let n = jEj; m = jFj. Fix T 2 N.

Let C(e; f) :=
PT

t=1 f(t) ¢ ct(e)
Let Calg(f) :=

PT
t=1 f(t) ¢ ct(et)

Then for all e 2 E ; f 2 F

E [Calg(f)] ·
1

¯

³
C(e; f) + log1=¯(nm)

´

If ¯ = 1 ¡ ² is close to 1,

E [Calg(f)] = (1 + £(²))C(e; f) + £

µ
log2(nm)

²

¶

Optimizing yields a regret bound of

O(
p
C(e; f) log(nm) + log(nm)).
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