Online Algorithms: Learning & Optimization with No Regret.

CS/CNS/EE 253 Daniel Golovin

The Setup

Optimization:

- Model the problem (objective, constraints)
- Pick best decision from a feasible set.

Learning:

- Model the problem (objective, hypothesis class)
- Pick best hypothesis from a feasible set.

- Same feasible set X in each round t
- Different Reward Models:
 - Stochastic, Arbitrary but Oblivious, Adaptive and Arbitrary

Concrete Example: Commuting

Pick a path x_t from home to school. Pay cost $f_t(x_t) := \sum_{e \in x_t} c_t(e)$ Then see all edge costs for that round. Dealing with Limited Feedback: later in the course.

Other Applications

- Sequential decision problems
- Streaming algorithms for optimization/learning with large data sets
- Combining weak learners into strong ones ("boosting")
- Fast approximate solvers for certain classes of convex programs
- Playing repeated games

Binary prediction with a perfect expert

- *n* hypotheses ("experts") h_1, h_2, \ldots, h_n
- Guaranteed that some hypothesis is perfect.
- Each round, get a data point p_t and classifications $h_i(p_t) \in \{0, 1\}$
- Output binary prediction x_t, observe correct label
- Minimize # mistakes

Any Suggestions?

A Weighted Majority Algorithm

- Each expert "votes" for it's classification.
- Only votes from experts who have never been wrong are counted.
- Go with the majority

mistakes $M \leq \log_2(n)$ Weights $w_{it} = I(h_i \text{ correct on first } t \text{ rounds }).$ $W_t = \sum_i w_{it}.$ $W_0 = n, W_T \geq 1$ Mistake on round t implies $W_{t+1} \leq W_t/2$ So $1 \leq W_T \leq W_0/2^M = n/2^M$

Weighted Majority

[Littlestone & Warmuth '89]

What if there's no perfect expert?

Each expert *i* has a weight *w(i)*, "votes" for it's classification in {-1, 1}.

Go with the weighted majority, predict sign($\sum_i w_i x_i$). Halve weights of wrong experts. Let m = # mistakes of best expert. How many mistakes M do we make?

Weights $w_{it} = (1/2)^{(\# \text{ mistakes by } i \text{ on first } t \text{ rounds})}$. Let $W_t := \sum_i w_{it}$. Note $W_0 = n, W_T \ge (1/2)^m$ Mistake on round t implies $W_{t+1} \le \frac{3}{4}W_t$ So $(1/2)^m \le W_T \le W_0(3/4)^M = n \cdot (3/4)^M$ Thus $(4/3)^M \le n \cdot 2^m$ and $M \le 2.41(m + \log_2(n))$.

Can we do better?

 $M \le 2.41(m + \log_2(n))$

Experts\Time	1	2	3	4
$e_1 \equiv -1$	0	1	0	1
$e_2 \equiv 1$	1	0	1	0

- No deterministic algorithm can get M < 2m.
- What if there are more than 2 choices?

Regret

"Maybe all one can do is hope to end up with the right regrets." – Arthur Miller

• Notation: Define *loss* or *cost* functions c_t and define the regret of x₁, x₂, ..., x_T as

$$R_T = \sum_{t=1}^T c_t(x_t) - \sum_{t=1}^T c_t(x^*)$$

where $x^* = \operatorname{argmin}_{x \in X} \sum_{t=1}^T c_t(x)$
A sequence has "no-regret" if $R_T = o(T)$.

Questions:

- How can we improve Weighted Majority?
- What is the lowest regret we can hope for?

The Hedge/WMR Algorithm*

[Freund & Schapire '97]

 $\operatorname{Hedge}(\epsilon)$

Initialize $w_{i0} = 1$ for all *i*.

In each round t:

$$p_t(i) := w_{it} / \sum_j w_{jt}$$

Choose expert e_t from categorical distribution p_t Select $x_t = x(e_t, t)$, the advice/prediction of e_t . For each i, set $w_{i,t+1} = w_{it}(1-\epsilon)^{c_t(x(e_i,t))}$

- How does this compare to WM?
- * Pedantic note: Hedge is often called "Randomized Weighted Majority", and abbreviated "WMR", though WMR was published in the context of binary classification, unlike Hedge.

The Hedge/WMR Algorithm

Randomization

Influence shrinks exponentially with cumulative loss.

Intuitively: Either we do well on a round, or total weight drops, and total weight can't drop too much unless every expert is lousy.

Hedge Performance

Theorem: Let x_1, x_2, \ldots be the choices of $\text{Hedge}(\epsilon)$. Then

$$\mathbb{E}\left[\sum_{t=1}^{T} c_t(x_t)\right] \leq \left(\frac{1}{1-\epsilon}\right) \mathbf{0} \mathbf{PT}_T + \frac{\ln(n)}{\epsilon}$$

where $\mathbf{OPT}_T := \min_i \sum_{t=1}^T c_t(x(e_i, t)).$

If $\epsilon = \Theta\left(\sqrt{\ln(n)/\mathsf{OPT}}\right)$, the regret is $\Theta(\sqrt{\mathsf{OPT}\ln(n)})$

Hedge Analysis

Intuitively: Either we do well on a round, or total weight drops, and total weight can't drop too much unless every expert is lousy.

Let
$$W_t := \sum_i w_{it}$$
. Then $W_0 = n$ and $W_{T+1} \ge (1-\epsilon)^{\mathsf{OPT}}$.
 $W_{t+1} = \sum_i w_{it}(1-\epsilon)^{c_t(x_{it})}$ (1)
 $= \sum_i W_t p_t(i)(1-\epsilon)^{c_t(x_{it})}$ [def of $p_t(i)$] (2)
 $\le \sum_i W_t p_t(i) (1-\epsilon \cdot c_t(x_{it}))$ [Bernoulli's ineq] (3)
 $= W_t (1-\epsilon \cdot \mathbb{E} [c_t(x_t)])$ (4)
 $\le W_t \cdot \exp (-\epsilon \cdot \mathbb{E} [c_t(x_t)])$ [1- $x \le e^{-x}$] (5)

$$\begin{aligned} & \text{Hedge Analysis} \\ & \mathcal{W}_{T+1}/W_0 \leq \exp\left(-\epsilon \sum_{t=1}^T \mathbb{E}\left[c_t(x_t)\right]\right) \\ & W_0/W_{T+1} \geq \exp\left(\epsilon \sum_{t=1}^T \mathbb{E}\left[c_t(x_t)\right]\right) \\ & \text{Recall } W_0 = n \text{ and } W_{T+1} \geq (1-\epsilon)^{\mathsf{OPT}}. \\ & \mathbb{E}\left[\sum_{t=1}^T c_t(x_t)\right] \leq \frac{1}{\epsilon} \ln\left(\frac{W_0}{W_{T+1}}\right) \leq \frac{\ln(n)}{\epsilon} - \frac{\mathsf{OPT} \cdot \ln(1-\epsilon)}{\epsilon} \\ & \leq \frac{\ln(n)}{\epsilon} + \frac{\mathsf{OPT}}{1-\epsilon} \end{aligned}$$

Lower Bound

If $\epsilon = \Theta\left(\sqrt{\ln(n)/\mathsf{OPT}}\right)$, the regret is $\Theta(\sqrt{\mathsf{OPT}\ln(n)})$ Can we do better?

Let $c_t(x) \sim \text{Bernoulli}(1/2)$ for all x and t. Let $Z_i := \sum_{t=1}^T c_t(x(e_i, t))$. Then $Z_i \sim \text{Bin}(T, 1/2)$ is roughly normally distributed, with $\sigma = \frac{1}{2}\sqrt{T}$. $\mathbb{P}[Z \leq u - h\sigma] = \exp\left(-\Theta(h^2)\right)$

 $\mathbb{P}\left[Z_i \le \mu - k\sigma\right] = \exp\left(-\Theta(k^2)\right)$

We get about $\mu = T/2$, best choice is likely to get $\mu - \Theta(\sqrt{T \ln(n)}) = \mu - \Theta(\sqrt{\mathsf{OPT} \ln(n)}).$

What have we shown?

- Simple algorithm that learns to do nearly as well as best fixed choice.
 - Hedge can exploit any pattern that the best choice does.
- Works for Adaptive Adversaries.
 - Suitable for playing repeated games. Related ideas appearing in Algorithmic Game Theory literature.

Related Questions

- Optimize and get no-regret against richer classes of strategies/experts:
 - All distributions over experts
 - All sequences of experts that have K transitions [Auer et al '02]
 - Various classes of functions of input features [Blum & Mansour '05]
 - E.g., consider time of day when choosing driving route.
 - Arbitrary convex set of experts, metric space of experts, etc, with linear, convex, or Lipschitz costs. [Zinkevich '03, Kleinberg et al '08]
 - All policies of a K-state initially unknown Markov
 Decision Process that models the world. [Auer et al '08]
 - Arbitrary sets of strategies in \mathbb{R}^n with linear costs that we can optimize offline. [Hannan'57, Kalai & Vempala '02]

Related Questions

- Other notions of regret (see e.g., [Blum & Mansour '05])
 - Time selection functions:
 - get low regret on mondays, rainy days, etc.
 - Sleeping experts:
 - if rule "if(P) then predict Q" is right 90% of the time it applies, be right 89% of the time P applies.
 - Internal regret & swap regret:
 - If you played $x_1, ..., x_T$ then have no regret against $g(x_1), ..., g(x_T)$ for every $g: X \rightarrow X$

[Freund et al '97, Blum '97, Blum & Mansour '05]

- if rule "if(P) then predict Q" is right 90% of the time it applies, be right 89% of the time P applies. Get this for every rule simultaneously.
- Idea: Generate lots of hypotheses that "specialize" on certain inputs, some good, some lousy, and combine them into a great classifier.
- Many applications:
 - Document classification, Spam filtering, Adaptive Uis, ...
 - if ("physics" in D) then classify D as "science".
- Predicates can overlap.

- Predicates can overlap
 - E.g., predict college major given the classes C you're enrolled in?
 - if(ML-101, CS-201 in C) then CS
 - if(ML-101, Stats-201 in C) then Stats
 - What do we predict for students enrolled in ML-101, CS-201, and Stats-201?

[Algorithm from Blum & Mansour '05]

SleepingExperts($\beta, \mathcal{E}, \mathcal{F}$)

Input: $\beta \in (0, 1)$, experts \mathcal{E} , time selection functions \mathcal{F} Initialize $w_{e,f}^0 = 1$ for all $e \in \mathcal{E}, f \in \mathcal{F}$. In each round t:

Let
$$w_e^t = \sum_f f(t) w_{e,f}^t$$

Let $W^t = \sum_e w_e^t$.
Let $p_e^t = w_e^t / W^t$.

Choose expert e_t from categorical distribution p^t Select $x_t = x(e_t, t)$, the advice/prediction of e_t . For each $e \in \mathcal{E}, f \in F$

$$w_{e,f}^{t+1} = w_{e,f}^t \beta^{f(t)(c_t(e) - \beta \mathbb{E}[c_t(e_t)])}$$

[Algorithm from Blum & Mansour '05]

$$w_{e,f}^{t+1} = w_{e,f}^t \beta^{f(t)(c_t(e) - \beta \mathbb{E}[c_t(e_t)])}$$

Ensures total sum of weights can never increase.

$$\sum_{e,f} w_{e,f}^t \le nm \text{ for all } t$$

$$w_{e,f}^{T} = \prod_{t \ge 0} \beta^{f(t)(c_t(e) - \beta \mathbb{E}[c_t(e_t)])}$$
$$= \beta^{\sum_{t \ge 0} [f(t)(c_t(e) - \beta \mathbb{E}[c_t(e_t)])]}$$
$$< nm$$

Sleeping Experts Performance

Let
$$n = |\mathcal{E}|, m = |\mathcal{F}|$$
. Fix $T \in \mathbb{N}$.
Let $C(e, f) := \sum_{t=1}^{T} f(t) \cdot c_t(e)$
Let $C_{\text{alg}}(f) := \sum_{t=1}^{T} f(t) \cdot c_t(e_t)$
Then for all $e \in \mathcal{E}, f \in \mathcal{F}$

$$\mathbb{E}\left[C_{\text{alg}}(f)\right] \le \frac{1}{\beta} \left(C(e, f) + \log_{1/\beta}(nm)\right)$$

If $\beta = 1 - \epsilon$ is close to 1,

$$\mathbb{E}\left[C_{\text{alg}}(f)\right] = \left(1 + \Theta(\epsilon)\right)C(e, f) + \Theta\left(\frac{\log_2(nm)}{\epsilon}\right)$$
Optimizing yields a regret bound of

 $O(\sqrt{C(e, f) \log(nm)} + \log(nm)).$