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A coupled system of two isothermal in vitro DNA/RNA amplification reactions
using different primers is modeled kinetically with realistic rate parameters and
shown to exhibit oscillatory behavior in a flow reactor. One of the two isothermal
amplification reactions acts as a predator of the other, the prey. The mechanism
of the oscillatory behavior is analyzed in terms of a hierarchy of kinetic models.
The work provides an insight into the choice of parameters for experiments. The
latter are important in providing detailed insight into the complex processes of
ecological interactions and their evolution.
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1. INTRODUCTION

Our knowledge of the evolutionary phenomena has increased markedly in pre-
cision since the first in vitro evolution experiments (Spiegelmann, 1971). The
use of well-characterized and isolated enzymes demonstrates the quantitative im-
plications of a genotype–phenotype relationship mediated by well-defined kinetic
and structural principles (e.g. RNA folding) (Biebricher et al., 1983, 1984, 1985).
New principles of evolution relevant to the search for early biological function
and modern virus evolution have been uncovered (Eigen, 1989). Although early
work was quick to highlight the importance of the big question of the origin of
cooperation between molecules (Eigen, 1971), the above-mentioned work with
the Qß enzyme has not allowed the level of control required for a programmed
coupling of different amplification cycles in vitro.

Furthermore, it has become very clear that the stabilization of cooperative
functions of biomolecules depends not only on the mode of functional coupling
of amplification, as in the work on hypercycles (Eigen and Schuster, 1977), but
also crucially on spatial properties such as compartmentation (Bray, 1980). This
has prompted some groups to shift the search to autonomous systems of coupled
oligonucleotide amplification and division of micelles (Luisi et al., 1994). In
recent work, however, it has been possible to show that spatial stabilization of
cooperation can be attained without the need for artificial compartments, by means
of pattern forming reaction diffusion processes (Boerlijst and Hogeweg, 1991;
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Böddeker and McCaskill, 1998). Since oscillatory kinetics in a homogeneous
setting are strongly correlated with the ability of a reaction diffusion system to
show complex pattern formation (Murray, 1982), it is important to investigate the
conditions under which coupled olignucleotide amplification systems can show
oscillatory behavior.

Hypercyclic coupling of self-replicating species in a ring with more than four
members has been shown to give rise to limit cycle oscillations (Eigen and
Schuster, 1977; Eigen and Schuster, 1978a; Eigen and Schuster, 1978b; Hofbauer
and Sigmund, 1988). Such complex coupling is difficult to realize experimentally,
however, due to the large number of specific interactions required. Ecologically,
the earliest recognized, and perhaps the simplest, form of coupling investigated
was that by Lotka (1910, 1920) and Volterra (1926, 1931) (Lotka was the first
to write down the equations for a hypothetical chemical system, followed by the
biologically inspired Volterra). This predator–prey coupling is not cooperative,
but the evolution of non-virulent forms of viruses does show us that such systems
can also give some insight into cooperation. In a separate investigation, the
authors have planned an extension to truly cooperative experimentally feasible
coupling schemes.

Self-sustained sequence replication (known as 3SR) (Guatelli et al., 1990) is an
isothermal amplification scheme (in contrast to PCR) for the coupled amplification
of both DNA and RNA oligomers. The cyclic coupling scheme is shown in
Fig. 1. The 3SR-reaction is performed by the concerted action of an RNA-
polymerase (T) and a reverse transcriptase (RT). These two enzymes implement
transcription, whereby single-stranded RNA oligomers are transcribed from the
double-stranded DNA template starting after a specific promoter sequence on the
DNA, and reverse transcription in which double-stranded DNA is synthesized
from a single-stranded RNA template in a multistep process. During multiple
cycles of transcription and reverse transcription RNA and DNA are amplified
jointly.

In order to establish a basis for the investigation of coupled 3SR reactions,
in Section 2 we summarize the known features of 3SR kinetics and propose a
simplified kinetic model. In Section 3, we present the proposed mechanism for
coupling 3SR amplification schemes as predator and prey and outline a kinetic
model for describing the coupled system. In order to gain a better understanding
of what features of the mechanism and parameters give rise to oscillatory behav-
ior, we compare these results with reduced kinetic schemes, which allows a direct
comparison with conventional predator–prey results. In Section 4 we present our
conclusions on the viable range of parameters for limit cycle predator–prey kinet-
ics of coupled 3SR reactions in flow reactors and provide a preliminary discussion
of the evolutionary features of such model systems.
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Figure 1. Reaction scheme of the 3SR-amplification. The 3SR reaction is performed
by the concerted action of a RNA-polymerase (T) and a reverse transcriptase (RT).
During multiple cycles of transcription and reverse transcription, RNA and DNA can
be amplified at the same time. The reaction is started from a synthetic, single-stranded
DNA template. Annealing of a DNA-primer P2 containing the promoter sequence for
the RNA-polymerase and subsequent generation of a fully double-stranded species by
the action of RT produces a substrate for in vitro-transcription by RNA-pol. Multiple
copies of antisense-RNA are synthesized. Another DNA-primer, P1, initiates reverse
transcription. The cycle is closed by simultaneous degradation of the RNA-strand by
RNAse activity of RT resulting in new single-stranded DNA. Straight lines refer to DNA
and waved lines refer to RNA. The abbreviations for the modules building the whole
sequence are: P1, P2 for primer sites, the RNA-polymerase promoter PROM and Seq1 for
a fixed sequence without any special function. Complementary sequences of the modules
are indicated by a prime. Numbers at the beginning and end of each sequence refer to
the direction of the sequence. Additional abbreviations are T for RNA-polymerase and
RT for reverse transcriptase.
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2. KINETIC MODEL

Each of the steps of the 3SR reaction mentioned above is a complicated
sequence- dependent biochemical process. Its complexity is beyond the scope of
an exact theoretical description. For an understanding of some of the successively
detailed levels of modeling required even for a simpler replication reaction, in
particular the monomer dependence, see Biebricher et al. (1983, 1984, 1985).
We model the 3SR scheme in terms of the simplified chemical reactions:

DNA + P2
k1−→ DNA : P2

DNA : P2 + RT
k2−→ DNA : P2 : RT

DNA : P2 : RT
k3−→ ds DNA+RT

ds DNA + T
k4−→ ds DNA : T

ds DNA : T
k5−→ RNA+T+ ds DNA

RNA + P1
k6−→ RNA : P1

RNA : P1 + RT
k7−→ RNA : P1 : RT

RNA : P1 : RT
k8−→ DNA+RT .

(1)

In arriving at (1) the following assumptions have been made:

• The nucleotide concentrations needed for the DNA and RNA polymeriza-
tions processes are constant; as is the case for example with an excess of
these nucleotides.
• The reactions where the enzymes RNA-polymerase and reverse transcrip-

tase act simultaneously in one complex play a minor role for the kinetics.
Thus, the RNA-polymerase and reverse transcriptase activities are assumed
to act independently.
• The activities of reverse transcriptase and the RNAse can be described

by a single reaction. Reverse transcriptase proceeds via a RNA–DNA
heteroduplex, the RNA of which is digested by the nuclease activity of
RT.
• Dead end side reactions as well as dissociation processes are neglected.
• The finite lifetime of the enzymes are neglected.

Some of these assumptions are—of course—not valid in all real-life 3SR exper-
iments. The effect of dead end side reactions as well as dissociation reactions
may be very important in certain cases, but we found them not to influence the
main findings of this work. Other assumptions, such as the neglect of the finite
enzyme lifetime or of the finite monomer concentration, are not satisfied for long
reaction times under batch conditions, but are valid in a flow reactor where the
monomer and enzymes are added continuously in the influx. In a flow reactor,
the following terms must be added:

C
φ−→ ∅ for C ∈M
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∅ φ [C] f lux−→ C for C ∈ {P1,P2,RT,T}

M is the set of all chemical species involved in the reaction scheme, the constant
φ is the flow rate and [C]flux is the concentration of a certain species in the influx.
The case φ = 0 reduces to a well-mixed reactor without any flux. Such a choice
for the flux reactions is motivated by the simplicity of its experimental realization.
All species (enzymes, primers, RNA, DNA, complexes) are diluted by the outflow
and if the reaction is not to die out, this effect must be compensated by the
amplification reaction. Since the primers and enzymes (and the monomers) are
not amplified, they must be added in the influx. An amplification reaction started
by adding a low template concentration at the outset can work for arbitrary long
time at high DNA/RNA concentration in this way. The DNA/RNA concentration
in the out flux can be optimized by the flow rate and the experimental study of
evolutionary effects in such a simple flow reactor should be worthwhile. In an
economical reactor, an immobilization of the enzymes may be advisable, but due
to the finite lifetime of the enzymes this reduces the long time stability of the
effects described later.

In the following, we first wish to discuss the reaction system (1) for the case
where the flow rate is zero. Later in this section we return to the case of non-zero
flux. The 3SR reaction is usually started with a low template (RNA or DNA)
concentration:

max([RNA]0, [DNA]0) � min([P1]0, [P2]0, [RT]0, [T]0). (2)

Hereafter we use the convention to denote chemical species by capital letters,
whereas [ ] or the corresponding lower case letter denotes the concentration
of the species. The index 0 indicates the concentration at t = 0. While the
concentration of RNA and DNA are low, the primer and enzyme concentrations
are assumed to be constant in the initial phase. Thus, the above reaction system
is reduced to the linearized system:

DNA
k1[P2]0−→ DNA : P2

DNA : P2
k2[RT]0−→ DNA : P2 : RT

DNA : P2 : RT
k3−→ ds DNA

ds DNA
k4[T]0−→ ds DNA : T

ds DNA : T
k5−→ RNA+ ds DNA

RNA
k6[P1]0−→ RNA : P1

RNA : P1
k7[RT]0−→ RNA : P1 : RT

RNA : P1 : RT
k8−→ DNA .



334 J. Ackermann et al.

The system of ordinary differential equations for the vector of concentrations EC
(the species are ordered as they occur in the above reaction system, C1 = [DNA],
C2 = [DNA : P2], . . . ) takes the form:

d EC
dt
= A EC (3)

k̃1 := k1[P2]0, k̃2 := k2[RT]0,

k̃4 := k4[T]0, k̃6 := k6[P10, k̃7 := k7[RT]0 (4)

with

A =



−k̃1 0 0 0 0 0 0 k8

k̃1 −k̃2 0 0 0 0 0 0
0 k̃2 −k3 0 0 0 0 0
0 0 k3 −k̃4 k5 0 0 0
0 0 0 k̃4 −k5 0 0 0
0 0 0 0 k5 −k̃6 0 0
0 0 0 0 0 k̃6 −k̃7 0
0 0 0 0 0 0 k̃7 −k8


. (5)

Except for the item in bold face, the matrix represents a simple cycle of trans-
formations. The regeneration of ds DNA following transcription (boldface entry)
is responsible for the net amplification of the cycle.

In the following we will assume the primer and enzyme association rates to be
fast compared with the activities of the enzymes:

min(k̃1, k̃2, k̃4, k̃6, k̃7) � max(k3, k5, k8). (6)

This may not be satisfied for every 3SR replication cycle. The binding of the
RNA-polymerase, for example, includes a promoter recognition step, which may
be slow depending on the promoter sequence. In such a case, the promoter recog-
nition step and the transcription step of the RNA-polymerase can be combined
to create one slow enzyme reaction; i.e. to k5.

Assumption (6) introduces two timescales: one for the fast bindings and the
other for the slow activities of the enzymes. For very short reaction times,
t � 1/max(k3, k5, k8), we can neglect the enzyme activities. Note that the
sum of the concentrations of the three species DNA,DNA : P2,DNA : P2 : RT is
constant on this time scale. This illustrates a more general feature of the reaction:
on the timescale of the enzyme activities we can assume the fast reactions to be in
a steady state. This motivates the introduction of the three lumped concentrations

[DNA′]= [DNA]+ [DNA : P2]+ [DNA : P2 : RT]

[ds DNA′]= [ds DNA]+ [ds DNA : T]

[RNA′]= [RNA]+ [RNA : P1]+ [RNA : P1 : RT],
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which for (6) are approximately given by

[DNA′]≈ [DNA : P2 : RT]

[ds DNA′]≈ [ds DNA : T]

[RNA′]≈ [RNA : P1 : RT].

In this case, the time dependency of the lumped concentrations is given by the
simple system of ordinary differential equations (ODEs):

d EC
dt
= A EC (7)

with

A :=
 −k3 0 k8

k3 0 0
0 k5 −k8

 (8)

and EC := ([DNA′], [ds DNA′], [RNA′])T. ODE (7) corresponds to the reaction
system

DNA′
k3−→ ds DNA′

ds DNA′
k5−→ RNA′ + ds DNA′

RNA′
k8−→ DNA′ .

(9)

for three ‘lumped species’ DNA′, ds DNA′, and RNA′. Note that the linearization
of the full system (1) is not necessary to arrive at the small ODE (7); but illustrates
the chemical conditions for this simplification.

In the non-degenerate case, the solution of this ODE can be expressed in terms
of the eigenvalues (λi , i = 1, 2, 3) and the eigenvectors (Exi , i = 1, 2, 3) of the
matrix A:

EC = γ1Ex1eλ1t + γ2Ex2eλ2t + γ3Ex3eλ3t (10)

with constants γi , i = 1, 2, 3. The eigenvalues are given by the roots of the
equation

λ3 + λ2(k3 + k8)+ λk3k8 − k3k5k8 = 0. (11)

The analytical expressions for the eigenvalues and eigenvectors are straightfor-
ward but not especially illuminating. A general feature of the solution may
be seen from the special case k3 = k5 = k8 = k which yields one dominant
positive eigenvalue λ1 ≈ 0.47k and a pair of complex conjugated eigenvalues
λ2,3 ≈ (−1.2± 0.79i )k. In general, the real part of the complex eigenvalue pair
is negative, the initial oscillatory behavior of the solution will die out rapidly
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and is not the subject of this paper. For longer times the concentration will grow
exponentially (∼ exp(λ1 t)). The solution of (9) takes the form [DNA′]

[ds DNA′]
[RNA′]

 ∼
 1

K1

K2

 exp(λ1 t) (12)

where the constant ratios K1 = [ds DNA′]/[DNA′] and K2 = [RNA′]/[DNA′]
are determined by the relative proportions k1 : k2 : k3.

However, even for infinitely fast complex formation reactions, the part of the
lumped species which exists as end product of these fast reactions is limited
by the finite primer and enzyme concentrations. For example, the concentration
of the complex DNA : P2 : RT cannot exceed the initial concentration of the
primer P2 minus the part of this concentration already consumed to produce
double-stranded DNA. These types of limitations lead to constraints of the form:

complex limiting function limited by

[DNA : P2 : RT] ≤ f1 = [P2]0 − [ds DNA′] P2
[DNA : P2 : RT] ≤ f2 = [RT]0 − [RNA : P1 : RT] RT
[ds DNA : T] ≤ f3 = [T]0 T
[RNA : P1 : RT] ≤ f4 = [RT]0 − [DNA′] RT
[RNA : P1 : RT] ≤ f5 = [P1]0 + [DNA]0

−[DNA′]− [ds DNA′] P1

(13)

When the concentration of these species reach their limiting values, they become
constant or drop exponentially to zero, depending on whether the limitation is
induced by the enzymes ( f2, f3, f4) or by the primer depletion ( f1, f5). In which
order these constraints influence the reaction plays a crucial role for the kinetic
behavior of the 3SR reaction. Since these constraints can set in at four different
time points, one for each of the primer concentrations and one for each of the
enzyme concentrations, there exist 4!(= 24) different orders in which the above
constraints may set in. Each case must be analyzed separately. Here we present
the procedure for one case and leave the reader to apply the procedure to other
cases of interest.

In Fig. 2 the concentration of the complexes DNA : P2 : RT, ds DNA : T and
RNA : P1 : RT is plotted for k1 = k2 = k3 = k = 0.005. In the initial phase,
all concentrations grow exponentially and the concentrations of the complexes
are identical with the concentrations of the corresponding lumped species. The
saturation of the reverse transcriptase sets in at t1, when f2 (dotted line) crosses
the concentration of DNA : P2 : RT. Now the concentrations of the complexes
DNA : P2 : RT and RNA : P1 : RT become constant (here we neglect a possible
small change in the RNA/DNA ratio). At t2 the concentration of free primers
P2 becomes zero and f1 crosses the constant concentration of DNA : P2 : RT.
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Figure 2. An example for different time phases of the 3SR reaction. Plotted are the
analytical forms (solid lines) and numerical results (asterisks) for the concentrations of
the complexes ds DNA : T,DNA : P2 : RT and RNA : P1 : RT. The exponential growth
at the beginning is limited by the saturation of the reverse transcriptase enzymes. The
time point for this limitation is t1, where f2 = [RT]0 − [RNA : P1 : RT] (dotted line)
crosses [DNA : P2 : RT]. Similar limitations occur at the time points t2 (exhaustion
of primer P2), t3 (exhaustion of primer P1) and t4 (saturation of RNA-polymerase), see
text.

No more complexes DNA : P2 : RT can be built due to the lack of free primers
P2 and the concentration of the DNA : P2 : RT complex drops exponentially
to zero. The emerging free enzymes RT react instantaneously to the complex
RNA : P1 : RT. Hence [RNA : P1 : RT] crosses f5 at t3 and the lack of the
primer P1 for t > t3 results in an exponential decreasing concentration of this
complex. The concentration of the complex ds DNA : T can be computed directly
from the concentration of the complex DNA : P2 : RT; exponential growth for
t < t1, linear growth for t1 < t < t2, which ascent drops continuously to zero
for t > t2; at t4 [ds DNA : T] reaches the initial concentration of the RNA-
polymerase. The analytical form of the concentrations can be derived easily
in this piecewise fashion. The corresponding concentrations resulting from a
numerical simulation of the full model are plotted in Fig. 2 as diamonds. There
is a good agreement between the results of the simple approximation described
above and the accurate numerical results; only near t2 and t3 does the continuous
drop to zero of the primer concentration smoothen the peaks of the curves.

In general, the 3SR reaction shows a sequence of kinetic regimes, starting with
an exponential growth and changing at certain titration endpoints to primer or
enzyme limited kinetics. The order and duration of these regimes depend on the
initial concentrations and the kinetic parameters. Within these regimes, the time
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Figure 3. Reaction scheme of the predator–prey system. (Notations as used in Fig. 1.)
The 3SR reaction on the left-hand side is described in detail in Fig. 1. The coupling of
two amplification systems is designed according to a predator–prey model by using an
intermediate of the first replication cycle (prey, left-hand side) as a primer for the second
one (predator, right-hand side). The predator cycle is only provided with the primer for
starting reverse transcription. The second primer is the single-stranded template DNA1 of
the prey cycle. The sequence of this template DNA1 is designed so that predator template
DNA2 and prey template DNA1 share complementary sequence elements at their 3′-ends.
The promoter sequence of RNA-pol is located upstream of this complementary sequence
element on DNA1. After annealing of DNA2 and DNA1, RT can synthesize the double-
stranded substrate for RNA-pol, which can start the in vitro transcription of antisense
predator RNA.

dependence of the concentrations can be described quite well in an analytical form
as described above. Experimentally the amplification of RNA and DNA products
is usually monitored through the incorporation of radio-labeled primers. On-line
monitoring is possible when measuring the increase in fluorescence intensity
of intercalating agents. Examples can be found in the work of Gebinoga and
Oehlenschläger (1996), who used this method to compare different 3SR-systems,
or in the work of Ehricht et al. (1997), who used the intercalating dye ToPro-
1 to study their cooperatively coupled 3SR system (CATCH) (Ehricht et al.,
1997). Such experimental curves can be compared with the theoretical dynamics
described above and these new insights into the reaction dynamic can be used to
optimize the 3SR reaction.

In this context the following considerations are helpful. For given kinetic
parameters, we can choose initial primer and enzyme concentrations so that the
time points t1, t2, t3 and t4 become equal. This corresponds to an optimal use of
primer and enzymes to enlarge the exponential growth phase. The conditions are

[P1]0 + [DNA]0 + [ds DNA]0

K1 + K2 + 1
= [P2]0 + [ds DNA]0

K1 + 1
= [T]0

K1
= [RT]0

K2 + 1
(14)

with the constants K1 and K2 from (12).
Another goal is the optimization of the 3SR in the latter linear RNA growth

phase. Independently of the order of limitation (13), the concentration of the
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complexes DNA : P2 : RT and RNA : P1 : RT will drop essentially to zero
for long reaction times, since only the RNA concentration grows linearly. The
growth rate in this linear phase depends either on the concentration of the double-
stranded DNA or on the concentration of the RNA-polymerase available. The
concentration of the double-stranded DNA depends on the initial primer concen-
trations:

pmin := lim
t→∞([ds DNA]+ [ds DNA : T]) = min ([P2]0, ([P1]0 + [DNA]0)). (15)

The linear growth rate RNA is determined by the actual concentration of the
ds DNA : T complex:

[RNA] = A+ k5 [ds DNA : T]t→∞t, (16)

with an offset constant A. The asymptotic concentration of ds DNA:T is given
by

[ds DNA : T]t→∞ =
1

2

(
k5

k4
+ pmin + [T]0

)

−
√

1

4

(
k5

k4
+ pmin + [T]0

)2

− pmin[T]0. (17)

The linear growth rate simplifies in the asymptotic cases

[RNA] ≈ A+ k4 pmin[T]0 for k5/k4 � max([T]0, pmin)

[RNA] ≈ A+ k5 [T]0t for [T]0 � max(pmin, k5/k4)

[RNA] ≈ A+ k5 pmint for pmin � max([T]0, k5/k4).

(18)

Thus for small primer and enzyme concentrations (compared with k5/k4) the
yield of the 3SR reaction can be optimized by increasing either the initial RNA-
polymerase concentration or the initial primer concentrations. The primers P1
and P2 should be added in equal concentrations.

For large initial concentrations the situation changes. If RNA-polymerase is
already given in unbalanced excess, an increase in this particular concentration
will have no (positive) effect. In contrast, the same is true for the primer concen-
tration; the initial concentrations of the primers and the RNA-polymerase should
be of the same order [P1]0 ≈ [P2]0 ≈ [T]0.

Let us now turn to the non-zero flux case. The main effect of the flux to a 3SR
reaction can be illustrated by considering the simple kinetic model system

RNA + P
k1−→ ds DNA

k2−→ ds DNA + RNA, (19)
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which—like the full reaction system (1)—shows an initial exponential growth
phase and a long-time linear growth phase. The flux is modeled by the reactions

ds DNA
φ−→ ∅

RNA
φ−→ ∅

P
φ−→ ∅

∅ φ [P]0−→ P .

Switching on the flow term, we obtain a finite non-trivial steady state:

[P] = φ2

(k2 − φ)k1
, [ds DNA] = [P]0 − φ2

(k2 − φ)k1
, (20)

[RNA] = k2 − φ
φ

[P]0 − φ

k1
. (21)

The non-trivial steady state turns into the trivial one:

[P] = [P]0, [ds DNA] = 0, [RNA] = 0 (22)

for flow rates greater than a critical flow rate

φc = k1[P]0

2

(√
1+ 4k2

[P]0k1
− 1

)
, (23)

which for [P0]� 4k2/k1 is simply given by the RNA transcription rate

φc = k2. (24)

Analysis of the full kinetic model (1) confirms this critical behavior. Below
this critical flow rate, the flow rate may be chosen to place the reaction in one
of kinetic regimes determined by the constraints (13). For values close to the
critical flow rate the reaction approaches the exponential growth phase, where
none of these limits has been reached. The critical flow rate is an important
indicator for the range of flow rates, where complex patterns can be expected in
one- and two-dimensional flow reactors (Guckenheimer and Holmes, 1993). In
our laboratory the critical flow rate is determined by a simple well-stirred glass
reactor with 30 µl volume. An on-line measurement of the fluorescence intensity
(using ToPro-1) allows in situ monitoring of the reaction while changing the flow
rate. The 3SR was shown to amplify RNA and DNA products in a very stably
manner (we observed the reaction for several hours) for appropriate flow rates.
An increase in the flow rate does not disturb the reaction until a critical flow rate
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is reached, then the concentrations of RNA and DNA are diluted by the outflux
and the fluorescence intensity drops to zero.

Despite the fact that this it not the theme of this work we want to mention that
the selection pressure among different species, which may occur by mutation are
rather high in a flow reactor. Due to the continuously high RNA/DNA concen-
trations possible over long reaction time, a well-mixed flow reactor represents
a valuable alternative to the serial transfer technique. In the next section we
shall see that these considerations are especially important in the case of coupled
systems in flow reactors.

3. COUPLED 3SR SYSTEMS

The design of a model system of coupled amplification cycles requires the func-
tionality of the species involved to be linked directly to their ability to replicate.
After execution of the function and running through the replication cycle, the
species has to be returned to the initial state. The isothermal reaction scheme
and flow conditions, as introduced at the end of Section 2, are necessary for this.
The simplest way to design the coupling of two amplification systems according
to a predator–prey model is to use a vital intermediate of one replication cycle
as a primer for the second one. This means that the second replication cycle
becomes the predator of the first one, the prey. In Fig. 3 this coupling method
is presented. The prey cycle works as described above, see Fig. 1. All neces-
sary compounds for the amplification, especially both primers, are provided. The
predator cycle, on the other hand, is only provided with the primer for starting
reverse transcription. The second primer is provided by the single-stranded tem-
plate DNA1 of the prey cycle. The sequence of this template DNA1 is designed so
that predator template DNA2 and prey template DNA1 are sharing a complemen-
tary sequence element at their 3′-ends. The consensus sequence of the promoter
of the RNA-polymerase is located upstream of this complementary sequence el-
ement on DNA1. After annealing DNA2 and DNA1, reverse transcriptase can
synthesize the double-stranded substrate for RNA-polymerase, which can start
the in vitro transcription of antisense predator-RNA.

The classic example of a predator–prey system is the well known Lotka–
Volterra reaction system:

X1
k1−→ 2X1

X2 + X1
k2−→ 2X2

X2
φ−→ ∅.

(25)

In the absence of the predator (X2), the prey (X1) grows exponentially. Con-
versely, the predator (X2) can not grow without prey, but its growth rate increases
proportionally to the prey. The system has two steady states; one saddle-point sin-
gularity at x2 = x1 = 0 and a second neutrally stable steady state at x2 = k1/k2,
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x1 = φ/k2. The solution for initial values in the neighborhood of the neu-
trally stable steady state is an oscillatory behavior with period T = 2π/

√
k1φ

(Murray, 1993). In accordance with the flow terms discussed in Section 2, an
outflow term for the prey may be added; the only effect is that we have to replace
k1 in the formulas above by k1 − φ.

While the Lotka–Volterra system (25) does not exhibit stable limit cycles, their
existence is known to depend on more detailed models of the interaction and
growth (Emlen, 1984). So we now turn to the detailed biochemical coupling,
derived from the ‘uncoupled’ kinetics studied in Section 2:

DNA1 + P2
ka

1−→ DNA1 : P2

DNA1 : P2 + RT
ka

2−→ DNA1 : P2 : RT

DNA1 : P2 : RT
ka

3−→ ds DNA1+RT

ds DNA1 + T
ka

4−→ ds DNA1 : T

ds DNA1 : T
ka

5−→ RNA1+T+ ds DNA1

RNA1 + P1
ka

6−→ RNA1 : P1

RNA1 : P1 + RT
ka

7−→ RNA1 : P1 : RT

RNA1 : P1 : RT
ka

8−→ DNA1+RT

DNA2 + DNA1
kb

1−→ DNA2 : DNA1

DNA2 : DNA1 + RT
kb

2−→ DNA2 : DNA1 : RT

DNA2 : DNA1 : RT
kb

3−→ ds DNA2+RT

ds DNA2 + T
kb

4−→ ds DNA2 : T

ds DNA2 : T
kb

5−→ RNA2+T+ ds DNA2

RNA2 + P3
kb

6−→ RNA2 : P3

RNA2 : P3 + RT
kb

7−→ RNA2 : P3 : RT

RNA2 : P3 : RT
kb

8−→ DNA2 .

(26)

The two 3SR replication cycles are as described above with a coupling of
the Lotka–Volterra type given by the primer function of DNA1. Without any
flow terms the predator is strongly disadvantaged. The priming of the prey DNA
(reaction rate ka

1 ) and the priming of the predator DNA (reaction rate kb
1) compete

for the prey DNA. Both reactions are of second order, but the concentration of
the primer P2 is several orders of magnitudes higher than the concentration of
DNA1 and DNA2 (at least in the exponential growth phase for the prey). The
part of prey DNA, which can be exploited by the predator is negligible. Thus, the
predator can only grow, after the concentration of the primer P2 has dropped to
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zero. This explains the fact that in batch experiments an effective predator/prey
coupling can only be found in a narrow parameter range. The predator can grow
only after the prey has stopped to grow, see Wlotzka and McCaskill (1997).

The situation changes in the case of a continuous operation in a well-stirred flow
reactor. Appropriate flow conditions can fix the steady-state concentration of the
prey cycle within a region which presents ideal conditions for the growth of the
predator. Then the two amplification cycles should show an effective coupling
of the Lotka–Volterra type. However, the situation is much more complicated
than in the simple Lotka–Volterra system: further couplings are introduced by
the common use of reverse transcriptase (RT) and RNA-polymerase (T); the
exponential growth is limited by enzyme saturation and primer depletion. The
dimension for the phase space of the full kinetic model is rather high and the
trajectories in this phase space depend on the initial concentrations, the choice of
the kinetic parameters and the flow conditions.

At first, it is not obvious that the above model will show any limit cycle oscil-
lations. In contrast to the Lotka–Volterra model the prey can not grow infinitely,
but is limited by the finite resource of the primer concentration. Resource-limited
predator–prey systems have been studied in the context of population biology and
do not cycle at all, see Emlen (1984) and literature therein. To see this for a
biochemical system in a flow reactor let us study the small system

X1 + R
k1−→ 2 X1

X2 + X1
k2−→ 2 X2

X1, X2,R
φ−→ ∅

∅ φr0−→ R,

(27)

which has the same type of primer-limited prey growth and a Lotka–Volterra
coupling as the full system (26). The non-trivial steady state of the system (27)
is given by

x∗1 =
φ

k2
, x∗1 =

k1

k1 + k2
r0 − φ

k2
, r ∗ = k2

k1 + k2
r0. (28)

There is a critical flow rate

φc = k1k2

k1 + k2
r0, (29)

for which x∗1 drops to zero and the non-trivial steady state becomes identical to
the trivial one. We non-dimensionalize by writing

τ = φ t, x̃1 = x1/r0, x̃2 = x2/r0, r̃ = r/r0 (30)
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and obtains the ODE

∂ x̃1

∂τ
= k1r0

φ
x̃1r̃ − x̃1 − k2r0

φ
x̃1x̃2

∂ x̃2

∂τ
= k2r0

φ
x̃2x̃1 − x̃2 (31)

∂ r̃

∂τ
=−k1r0

φ
x̃1r̃ + 1− r̃ .

Let us now introduce two key parameters

γ = k1

k2
≥ 0 and δ = φc

φ
= k1k2r0

(k1 + k2)φ
≥ 1. (32)

γ is a measure for the relative predator–prey coupling, whereas δ−1gives the flux
rate normed by the critical flow rate. Linearization about the non-trivial steady
state yields the Jacobian

A =
 0 −1 γ

δ − 1 0 0
−δ 0 −γ − 1

 . (33)

The eigenvalues of A

λ1 = −1, λ2,3 = −γ
2
± 1

2

√
(γ + 2)2 − 4δ(γ + 1) (34)

have only negative real parts and thus, system (27) can only exhibit damped
oscillations. Note, that the imaginary parts of λ2,3 are non-zero for

δ ≥ (γ + 2)2

4(γ + 1)
, (35)

which corresponds to stable spiral trajectories near the steady state. Whereas
the classical Lotka–Volterra model shows undamped oscillations, in the resource-
limited predator–prey model (27) the oscillation is damped.

Table 1. Standard values of kinetic parameters used in the numerical simulations.
Parameter Value
φ 0.004 s−1 (flow rate)
ka,b

3 0.1 s−1

ka,b
5 0.02 s−1

ka,b
8 0.01 s−1

ka,b
i all higher-order reactions 108 mol−1 s−1
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Figure 4. Predator–prey phase plane trajectories for the coupled 3SR reaction system.
Plotted are the concentration of the complex ds DNA2 : T (predator) versus the concen-
tration of the complex ds DNA1 : T (prey). The kinetic parameters are listed in Table 1
and the curve of concentrations, where the RNA-polymerase is saturated, given as a
dotted line. Each of the eight trajectories start at a small prey concentration and end in
the same steady state.

To gain an overall understanding of the coupled 3SR replication system we have
performed numerical computations for the full reaction system (26) for numerous
choices of the parameters. As an example, see Fig. 4 showing different phase
plane trajectories of [ds DNA1 : T]/[ds DNA2 : T]. Here we chose a set of
realistic kinetic parameters listed in Table 1. The initial primer and enzyme
concentrations are chosen according to (14) for K1 = 10.66 and K2 = 10.99.
None of the species are assumed to be immobilized and only the enzymes and
the primers are included in the inlet flow. The curves in Fig. 4 each start at a
rather high concentration of the predator, but a different prey concentration. The
form of these trajectories are very similar: first the concentration of ds DNA2 : T
(predator) reaches the RNA-polymerase saturation curve, given by [ds DNA1 :
T] + [ds DNA2 : T] = [T]0 and plotted as a dotted line. Then the predator
concentration decreases due to the flux term and lack of prey. As the predator
concentration drops the prey concentration starts to increase causing the predator
to rise again and the phase plane trajectories reach the RNA-polymerase saturation
curve for [ds DNA1 : T] > [ds DNA2 : T]. Here the concentration of ds DNA1 :
T can not grow any longer and the trajectories go along the RNA-polymerase
saturation curve into a stable steady state.

The form of the trajectories change when we increase kb
1 to 3× 108 mol−1 s−1,

see Fig. 5. In this case, the steady states do not lie on the RNA-polymerase
saturation curve and the trajectories spiral into the steady state. Increasing further
kb

1 to 6 × 108 mol−1 s−1 yields stable limit cycle oscillations, see Fig. 6. The
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Figure 5. The same plot as in Fig. 3, but with kb
1 = 3 × 108 mol−1 s−1. Thus, the

efficiency of the predator to catch prey is increased by a factor of 3. Here the trajectories
turn in stable spirals to the fixed point.
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Figure 6. The same plot as in Figs 3 and 4, but with kb
1 = 6× 108 mol−1s−1. Now the

trajectories show oscillatory behavior, see text.
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oscillation only occurs for sufficient large flow rates. This is easy to understand,
since the RNA production rate of prey and predator become rather independent if
the death rates of the double-stranded DNAs of both cycles are too small. Adding
inverse reactions to each association reaction does not destroy the oscillation.
Surprisingly the fixed point becomes stable when the predator’s ability to catch
and convert the prey is increased, for example the choice kb

i = αka
i , i =

1, 2, . . . , 8 with a sufficient large factor α dampens the oscillation. The qualitative
behavior of the phase-plane trajectories shown in Figs 4 and 5 are found in the
small predator–prey model (27), whereas the limit cycle oscillation shown in
Fig. 6, on the other hand, only occur in the full system. What is the mechanism
producing the limit cycle oscillation shown in Fig. 6?

One possibility is that the coupling arises from the use of identical enzymes
(RNA-polymerase and reverse transcriptase) in the predator and prey replication
schemes; one cycle may act as an inhibitor for the other one thus producing an
additional coupling. Experimentally this could be examined by applying distinct
enzymes in the prey and predator 3SR cycles. By simulating the corresponding
reaction system we observed no effect on the limit cycle oscillation. The only
remaining explanation for the differences in the qualitative kinetic of the small
model (27) and the full model (26) is the difference in the functional predator
response. In the small system (27), the predator production rate depends linearly
on the prey concentration throughout its range. In the full system (26) this is not
longer valid. For small predator and large prey concentrations, the fast complex
binding reactions result in a saturation of the predator. This leads to a kind of
Michaelis–Menten substrate saturation for a small predator concentration, where
the predator production rate depends only on the predator concentration itself but
not on the prey concentration. This kind of coupling can be modeled by the small
reaction system

X1 + R
k1−→ Y1

k3−→ 2X1

X2 + X1
k2−→ Y2

k4−→ 2X2

Xi ,Yi ,R
φ−→ ∅ i = 1, 2

∅ φ r0−→ R .

(36)

As numerical simulations show, this reaction system can oscillate. Let us study
the system in some detail. The steady state of interest is given by

r ∗ = k2(k4 − φ)r0

k1(k4 + φ)+ k2(k4 − φ), x∗1 =
φ(k4 + φ)
k2(k4 − φ), y∗1 =

k1

k3 + φ x∗1r ∗,

(37)

x∗2 =
k1(k3 − φ)
k2(k3 + φ)r

∗ − φ

k2
, y∗2 =

k2

k4 + φ x∗1 x∗2 . (38)
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Linearization about the steady state yields the Jacobian

A =


−k1r ∗ − k2x∗2 − φ −k2x∗1 2k3 0 −k1x∗1

−k2x∗2 −k2x∗1 − φ 0 2k4 0
k1r ∗ 0 −k3 − φ 0 k1x∗1
k2x∗2 k2x∗1 0 −k4 − φ 0
−k1r ∗ 0 0 0 −k1x∗1 − φ

 .
(39)

The matrix A depends parametrically on k1, k2, k3, k4, r0 and φ; two of them can
be eliminated by non-dimensionalizing the problem. We reduce the number of
parameters by fixing the flow rate and the parameters of the prey

r0 = 10−6 mol, k1 = 108 mol−1 s−1, k3 = 0.01 s−1, φ = 0.005 s−1

(40)
to values similar to those used in the full system (see Table 1) and vary the two
parameters

γ = k2/k1, ρ = k4/k3. (41)

In particular, we are we looking for parameters γ and ρ for which the steady
state becomes unstable, for example for which at least one of the eigenvalues of
the Jacobian A has a positive real part. The behavior of the system when γ and ρ
vary is shown in the bifurcation diagram plotted in Fig. 7. The two-dimensional
phase space is segmented into three domains. For ρ ≤ 0.5 the efficiency of the
predator in converting food (prey) becomes too low and the predator dies due
to the outflow. For small γ or large ρ the fixed point is stable but in the case
of increased γ it can become unstable through a saddle-point bifurcation (solid
line). It turns out that for each fixed parameter ρ in the range 0.5 ≤ ρ ≤ 2.5 the
Jacobian has at least one eigenvalue pair with a positive real part for γ which
is sufficiently large (γ > γthr(ρ)). The threshold function γthr(ρ) (given by the
line of the saddle-point bifurcation) determines the minimal relative predator–
prey coupling γ for which oscillation can be expected. Note that according to
Fig. 7, stability is more likely to occur for larger ρ values. This observation is in
agreement with the behavior of the full system which was found in the numerical
simulation, but, on the other hand, runs in contrast to the results of conventional
predator–prey models (Emlen, 1984): system (36) is more apt to be stable if the
predator is highly efficient in converting food (prey) to growth and reproduction.

Of special experimental interest is the dependency of the system on the flow
rate, which can be easily varied in a flow reactor. Thus, let us fix the ratio
ρ = k4/k3 to one (k4 = k3) and vary the flow rate. The corresponding bifurcation
diagram is shown in Fig. 8. Obviously the concentrations drop to zero beyond
the critical flow rate φ ≈ 0.01 (broken line). Below the critical flow rate the fixed
point is stable for small values of γ . By increasing γ the fixed point becomes
unstable when the saddle-point bifurcation (solid line) is crossed. Note, that the
flow rate determines the frequency of the oscillation and for the observation of
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Figure 7. The region of stability and instability of the steady state (37) of the small
reaction system (36) in the γ –ρ plane. The parameter γ = k2/k1 gives the relative
efficiency of the predator to catch the prey, whereas ρ = k4/k3 gives the relative
efficiency of the predator at converting food (prey) for growth and reproduction. The
two-dimensional phase space is segmented into three domains. For ρ ≤ 0.5 the efficiency
of the predator in converting food (prey) becomes too low and the predator dies due to
the outflow. For small γ or large ρ the fixed point is stable but in the case of increased
γ it can become unstable through a saddle-point bifurcation (solid line). Note, that the
system is more apt to be stable for large ρ values.

such oscillations it is advantageous to choose the flow rate as large as possible.
Figure 8 shows that the unstable region can be reached with γ < 2.0 nearly up
to the critical flow rate.

4. DISCUSSION AND CONCLUSION

This work is based on the analysis of a kinetic model for the experimental 3SR
reaction. However the detailed comparison of this model with experimental data
is not the focus of the current work. That the model captures the essentials of
isothermal amplification in the 3SR reaction can be verified by the reader by com-
paring with Guatelli et al. (1990); Ehricht et al. (1997); Gebinoga and Oehlen-
schläger (1996). Based on the kinetic model, a coupled in vitro DNA-based
predator–prey system has been studied. An experimental paper is in preparation
where both the detailed kinetics of the 3SR reaction and the predator–prey cou-
pled system have been investigated by detailed radio-labeled tracing (Wlotzka
and McCaskill, 1997). The model system has been realized experimentally as
described in Fig. 3. Under batch and flow conditions, evidence for the coupling
of both cycles could be found. Further work involving a search for optimal con-
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Figure 8. The region of stability and instability of the steady state (37) of the small
reaction system (36) in the γ –φ plane. The parameter γ = k2/k1 gives the relative
efficiency of the predator to catch the prey, whereas φ is the flow rate measured in
units of φ0 = 0.005 s−1. The concentrations drop to zero beyond the critical flow rate
φ ≈ 0.01 (broken line). Below the critical flow rate the fixed point is stable for small
values of γ . By increasing γ the fixed point becomes unstable when the saddle-point
bifurcation (solid line) is crossed. The unstable region can be reached with γ < 2.0
nearly up to the critical flow rate.

ditions for stable oscillation will be based on the theoretical analysis presented in
the current contribution. The current work is therefore not based on hypothetical
reaction schemes, but represents a theoretical contribution predicting oscillatory
behavior in an experimental system under current investigation.

The choice of mass-action kinetics described using ODEs is conventional, but
the reader should consult reference Wu and Kapral (1994) for example, for a
discussion of possible complications. We have ignored stochastic effects in the
above analysis, which will certainly become important in extensions of the model
to evolutionary questions, see below. Much modeling of predator–prey systems
in the biological literature is in terms of delay equations, which are not usual
in chemical kinetics. The relationships to the treatment in terms of continuous
differential equations, however, are well documented in the literature (Murray,
1993).

Numerical simulation of the full kinetic model shows stable oscillatory kinetics
(a limit cycle). In general, limit cycle kinetics of predator–prey-like systems
show significant dependence on the details of the model used and so it was
important to describe a multicomponent model with realistic kinetics to establish
this behavior for a real evolutionary biochemical system. Hypercycle models, for
example, require more than four coupled species for oscillations to occur Eigen
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and Schuster (1977, 1978a; 1978b). The mechanism of the oscillation has been
analyzed and can be described by a simple model. The critical kinetic parameter
for the oscillation is the efficiency of the predator to catch prey, whereas a high
efficiency of the predator to convert the prey stabilizes the non-oscillatory state
of the system. There exists a minimum flow rate for oscillatory kinetics, so
that the embedding of the biochemistry in a flow reactor is essential. Above
a certain critical flow rate, as described in Section 2, all species are diluted
out, so that the results predict a range of flow rates to be used as a guide in
optimizing experimental systems. Further simulations have shown that the results
are comparatively insensitive with the reversal of the bimolecular association
steps (primer annealing and enzyme binding) even when these reverse dissociation
reactions proceed faster than the polymerizations processes. Choice of primer
sequences and enzyme concentrations can significantly bias the rates of reactions,
so that the optimization criteria derived in this work can be used practically to
guide decisions in the construction of oscillatory kinetics.

Biochemical oscillations have been studied in great detail since the early work
on glycolysis (Goldbeter, 1996). The oscillatory mechanism proposed in this
work is of the quadratic rather than cubic catalysis type (Gray and Scott, 1985).
Chemical chaos (Swinney, 1984; Olsen, 1983) is unlikely in the system investi-
gated here, and did not show up in the numerical simulations. The significance
of this work revolves around the fact that a realistic model of an evolvable bio-
chemical system has been shown to undergo stable limit cycle oscillations. In an
evolutionary context, oscillations have a major impact on the selection process.
The existence of limit cycle oscillations in the kinetics can also lead to spatial
pattern formation processes which give rise to totally new phenomena at the level
of molecular selection. In cooperative systems, for example, it has been shown
that functional cooperation between molecules can be stabilized by this means
(Boerlijst and Hogeweg, 1991; Böddeker and McCaskill, 1998). Evolution ex-
periments on laboratory timescales have been made possible by the discovery of
simple isothermal amplification schemes such as the 3SR reaction, so that the
tenants of evolutionary population ecology will be testable in the near future in
chemical terms.

In this work we summarize the considerations, which have been helpful for the
recent construction and optimization of the coupled isothermal amplification of
nucleic acids in our laboratory (Wlotzka and McCaskill, 1997), see also Ehricht
et al. (1997); Wright and Joyce (1997); Ellington et al. (1997) and references
therein. Starting with the knowledge of the dynamic behavior of the components
of a single 3SR a coupling to a predator has been selected. The weakness of
the competitive predator/prey coupling in batch experiments is well understood
by our model and leads to the realization, that a flow reactor is essential for
an effective molecular predator/prey system. The most critical parameter for
the asymptotic behavior of the system is the efficiency of the predator to catch
the prey. In the case of small efficiency [given by a small parameter γ in the
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small system (36)] both predator and prey have a stable non-zero concentration
for t → ∞. When the efficiency γ is increased the fixed point becomes un-
stable and the concentrations oscillate. The velocity of annealing predator and
prey depends strongly on the matching sequences. Thus, the parameter γ can
be influenced by choosing corresponding sequences for the biochemical preda-
tor/prey system. Note also, that the molecular evolution of the predator will lead
to a higher efficiency of the predator to catch the prey and, thus, will lead to
an increasing value of γ . Reaching the unstable region, the oscillations and the
possible pattern formations in a spatial (two-dimensional/three-dimensional) flow
reactor may result in a complex evolution of the kinetic, the sequences and the
spatial structure of the system.

First flow experiments have been performed with a single as well as with
the coupled system. In both cases the amplification turns out to be very stable
and a critical flow rate can be measured. For appropriate flow conditions the
concentration of the prey as well as the concentration of the predator can both
be kept simultaneously on a rather high value, which is a promising result in
view of a future detection of oscillation or pattern formation for this system. At
present our group is studying the evolutionary stability of the coupled system and
planning experiments for the detection of oscillation. To minimize the cost of
such experiments micro-structured flow reactors with immobilized enzymes are
currently designed and produced in our laboratory, see also Foerster et al. (1994).
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