
CS184a Winter 2005

California Institute of Technology
Department of Computer Science

Computer Architecture

CS184a, Winter 2005 Assignment 2: Space-Time Multiply Monday, January 17

Due: Monday, January 17, 9:00am

Everyone should do all problems.

We saw in lecture how to build various adders. In this problem, I’m asking you to review or
develop various techniques for building multipliers.

• Give latency and area in terms of the operand bitwidth, w.

• When asked to draw an implementation or provide microcode, you may show the w = 4
case.

1. Show a w × w spatial multiplier built out of simple, ripple-carry adders.

• What is the area and latency?

2. Consider using delayed addition within the spatial multipler. In delayed addition, the
adders use the same full adder bitslice as in a ripple-carry adder. However, the carries
are wired up differently.

FAFA FAFA

A[3] B[3] C[3] A[2] B[2] C[2] A[1] B[1] C[1] A[0] B[0] C[0]

S0[0]S1[1] S0[1]S0[2]S1[2]S0[3]S1[3]S0[4]

Here, A and B will be your normal two inputs to the adder. S0 and S1 together store
the sum.

• What is the latency of a single addition?

• How does the C input to the delayed adder get used?

• Use these adders to build a spatial multipler. Show the resulting, spatial multi-
plier which starts with numbers in standard form, but uses these delayed adders
internally.

• What do you need to do on the output of the multiplier to convert the result
back into normal form? What is the overall latency and area of the multiplier
including this final return to standard form?

1

CS184a Winter 2005

• How do you minimize the latency of this multiplier from input to final output in
normal form.

• What is the final area and latency of this multiplier?

3. Combine the delayed adders which make up the previous multiplier with an associative
reduce tree.

• How deep is the reduce tree?

• Show the resulting multipler

• What is the final area and latency of this multiplier?

4. Write vertical µcode to implement: C = (A×B). For the datapath and simulator pro-
vided (see end of assignment and /cs/courses/cs184/winter2005/arith_ucode/).

• Don’t worry about writing any special code for overflow. Just show the basic
computation code for the multiply.

• Turnin your microcode for multiplication (show both a symbolic form and the
assembled bits)

• What is the area and latency for this multiplier (assume the datapath is widenned
with w; give latency in the same units as before (not in cycles, but in time))

5. Consider modifying the datapath from the previous problem so that it uses delayed
addition.

• Describe how the datapath would need to change. (we are not asking for the
implementation; just write text and, if appropriate, provide a diagram.)

• What impact would this have on the datapath cycle time? (under what situations
would this be beneficial?)

• What is the area and latency for this multiplier (assume the datapath is widenned
with w; give latency in the same units as before (not in cycles, but in time))

• You do not need to provide code for this case, but you will need to sketch out the
implementation enough to justify your latency answer above.

6. Fillin the following table from your area/latency answers to the problems above:

Design Area Latency

P1: Ripple-Carry Based
P2: Delayed-Addition Based

P3: Associative Reduce Delayed-Addition
P4: µcoded

P5: µcoded using Delayed Addition

2

CS184a Winter 2005

Simple Branching Processor Datapath

aluop

write

input

output

address_input

program_counter

PC

D
ec

od
e

op

in1 in2

out

writep

dst

ALU

Register
 File

In
st

ru
ct

io
n

 S

to
re

clock

nextPC ifetch idecode rf_read rf_writeeval

Control

branch_addr

op
branch

test

branch branch_addr

BU

reset

dst

src2

src1

dst

src2

src1

The basic processor organization is as shown above. Non-branching instructions are of the
form:

bits 13:10 9 8:6 5:3 2:0
field op w src1 src2 dst

• op – operation to be performed (typically by ALU)
• w – write back ALU output to register file? (1=yes, 0=no)
• src1 – address of first ALU operand in register file
• src2 – address of second ALU operand in register file
• dst – address in register file into which the result should be sotred

For branch operations, the branch addr is the low 6 bits of the instruction; that is, it is in
the same place we would have placed src2 and dst in a normal, ALU operation.

bits 13:10 9 8:6 5:0
field BNZ 0 src1 branch addr

3

CS184a Winter 2005

Generally, on each cycle the processor performs:

op,w,src1,src2,dst = instruction store[pc]
...,branch addr = instruction store[pc]
in1=register file[src1]
in2=register file[src2]
if (w==1)

register file[dst]←(in1 op in2)
if ((op==BNZ) && (in1!=0))

pc←branch addr
else

pc←pc+1

A special “done” operation indicates the computation is done and the program counter
should stop incrementing. A reset signal tells the program counter to set its value to zero
and begin computation.

The following ops are defined:

aluop encoding operation

ADD 0x00 dst← src1+src2
INV 0x01 dst← ∼(src1)
SUB 0x02 dst← src1-src2
XOR 0x03 dst← src1∧src2

OR 0x04 dst← src1—src2
INCR 0x05 dst← src1+1
AND 0x08 dst← src1&src2
BNZ 0x0A if (src1!=0) pc←branch addr
SRA 0x0B dst← src1>>1; dst[31]=src1[31]
SRL 0x0C dst← src1>>1; dst[31]=0
SLA 0x0D dst← src1<<1
SLL 0x0E dst← src1<<1

DONE 0x0F stop execution

4

CS184a Winter 2005

A simple C simulator is provided for this datapath. run.c is the top level for the simple
processor simulator. The processor is assembled and its cycle-by-cycle execution occurs in
branching processor.c. Each component of the processor has its own C file. The provided
Makefile will build the run simulator.

The instruction format and encodings are defined in instruction.h.

run takes 3 arguments:

• instruction file (read)
• initial register file (read)
• final register file (written)

The instruction file and register file each consist of a series of lines with one hex number per
line. The ith line, should contain the value for the ith entry in the instruction store and
register file, respectively.

For example inputs, see ex1.ibits (instruction file) and ex1.rbits (initial register file).
ex1.asm is an example showing symbolic comments to go with the raw instruction words.

5

