
1

Caltech CS184 Winter2003 -- DeHon
1

CS184a:
Computer Architecture

(Structure and Organization)

Day 20: March 3, 2003
Control

Caltech CS184 Winter2003 -- DeHon
2

Previously

• Looked broadly at instruction effects
• Looked at structural components of

computation
– interconnect
– compute
– retiming

• Looked at time-multiplexing

2

Caltech CS184 Winter2003 -- DeHon
3

Today

• Control
– data-dependent operations

• Different forms
– local
– instruction selection

• Architectural Issues

Caltech CS184 Winter2003 -- DeHon
4

Control
• Control: That point where the data

affects the instruction stream (operation
selection)
– Typical manifestation

• data dependent branching
– if (a!=0) OpA else OpB, bne

• data dependent state transitions
– new => goto S0
– else => stay

• data dependent operation selection

+/- addp

3

Caltech CS184 Winter2003 -- DeHon
5

Control

• Viewpoint: can have instruction stream
sequence without control
– I.e. static/data-independent progression

through sequence of instructions is control
free

• C0→C1→C2→C0→C1→C2→C0 →…
– Similarly, FSM w/ no data inputs
– Recall could do multiply w/out branching…

Caltech CS184 Winter2003 -- DeHon
6

Terminology (reminder)

• Primitive Instruction (pinst)
– Collection of bits which tell a bit-processing

element what to do
– Includes:

• select compute operation
• input sources in space (interconnect)
• input sources in time (retiming)

• Configuration Context
– Collection of all bits (pinsts) which describe

machine’s behavior on one cycle

4

Caltech CS184 Winter2003 -- DeHon
7

Why?

• Why do we need / want control?

• Static interconnect sufficient?
• Static sequencing?
• Static datapath operations?

Caltech CS184 Winter2003 -- DeHon
8

Back to “Any” Computation

• Design must handle all potential inputs
(computing scenarios)

• Requires sufficient generality

• However, computation for any given
input may be much smaller than general
case.

5

Caltech CS184 Winter2003 -- DeHon
9

Two Control Options

1. Local control
– unify choices

• build all options into spatial compute structure
and select operation

2. Instruction selection
– provide a different instruction (instruction

sequence) for each option
– selection occurs when chose which

instruction(s) to issue

Caltech CS184 Winter2003 -- DeHon
10

Example: ASCII Hex→Binary

• If (c>=0x30 && c<=0x39)
– res=c-0x30 // 0x30 = ‘0’

• elseif (c>=0x41 && c<=0x46)
– res=c-0x41+10 // 0x41 = ‘A’

• elseif (c>=0x61 && c<=0x66)
– res=c-0x61+10 // 0x61 = ‘a’

• else
– res=0

6

Caltech CS184 Winter2003 -- DeHon
11

Local Control

01x0?

P3*P1+P2*P0

0011? 1→6? <=9?

P2*P0

C1*C0*I<3>+
C1*/C0

C1*(I<1>*C0+
/C0*(I<1> xor I<0>))

C0*I<2>+
/C0*(I<2> xor I<0>*I<1>) C1*(I<0>==C0)

C1*r2a

P3 P2 P1 P0

C1 C0

r2aR<3>

R<2>

R<1> R<0>

Which
case?

0
I<3:0>

I<3:0>+0x1001

I<7:4> I<3:0>

One
of

three
cases

Caltech CS184 Winter2003 -- DeHon
12

Local Control

• LUTs used ≠ LUT evaluations produced
• This example:

– each case only requires 4 4-LUTs to
produce R<3:0>

– takes 5 4-LUTs once unified

• => Counting LUTs not tell cycle-by-
cycle LUT needs

7

Caltech CS184 Winter2003 -- DeHon
13

Instruction Control
01x0?

P3*P1+P2*P0

0011? 1→6? <=9?

P2*P0

C1*C0*I<3>+
C1*/C0

C1*(I<1>*C0+
/C0*(I<1> xor I<0>))

C0*I<2>+
/C0*(I<2> xor I<0>*I<1>) C1*(I<0>==C0)

C1*r2a

P3 P2 P1 P0

C1 C0

r2aR<3>

R<2>

R<1> R<0>

P3 P2 P1 P0
C1 C0

R3 r2a R1 R0
R2

P3 P2 P1 P0 0 1
C0 1 C1

0 0 0 0 0 0
R3 R2 R1 R0 0 0

00
01
10
11

Instruction Control

Static Sequence

Caltech CS184 Winter2003 -- DeHon
14

Static/Control

• Static sequence
– 4 4-LUTs
– depth 4
– 4 context
– maybe 3

• shuffle r2a w/ C1, C0
• execute 0 1 1 2 0 1 1 2

• Control
– 6 4-LUTs
– depth 3
– 4 contexts

– Example too simple
to show big
savings...

8

Caltech CS184 Winter2003 -- DeHon
15

Recall from Multiplier

• Do selective add
– vs. compute mask and add
– computation in either case [bit 0, bit 1]

• (even with branch op)
– …was less than unified case

• Also option to terminate early
– Can optimize for expected case

Caltech CS184 Winter2003 -- DeHon
16

Local vs. Instruction

• If can decide early enough
– and afford schedule/reload
– instruction select => less computation

• If load too expensive
– local instruction

• faster
• maybe even less capacity (AT)

9

Caltech CS184 Winter2003 -- DeHon
17

Slow Context Switch
• Instruction selection profitable only at

coarse grain
– Xilinx ms reconfiguration times
– HSRA µs reconfiguration times

• still 1000s of cycles
• E.g. Video decoder [frame rate = 33ms]

– if (packet==FRAME)
• if (type==I-FRAME)

– IF-context
• else if (type==B-FRAME)

– BF-context

Caltech CS184 Winter2003 -- DeHon
18

Local vs. Instruction

• For multicontext device
– fast (single) cycle switch
– factor according to available contexts

• For conventional devices
– factor only for gross differences
– and early binding time

10

Caltech CS184 Winter2003 -- DeHon
19

Optimization

• Basic Components
– Tload -- config. time
– Tselect -- case

compute time
– Tgen -- generalized

compute time
– Aselect -- case

compute area
– Agen -- generalized

compute area

• Minimize Capacity
Consumed:
– ATlocal = Agen× Tgen

– ATselect =
• Aselect× (Tselect+Tload)
• Tload→0 if can overlap

w/ previous operation
– know early

enough
– background load
– have sufficient

bandwidth to load

Caltech CS184 Winter2003 -- DeHon
20

FSM Control Factoring
Experiment

11

Caltech CS184 Winter2003 -- DeHon
21

FSM Example

• FSM -- canonical “control” structure
– captures many of these properties
– can implement with deep multicontext

• instruction selection
– can implement as multilevel logic

• unify, use local control

• Serve to build intuition

Caltech CS184 Winter2003 -- DeHon
22

FSM Example (local control)

4 4-LUTs
2 LUT Delays

12

Caltech CS184 Winter2003 -- DeHon
23

FSM Example (Instruction)

3 4-LUTs
1 LUT Delay

Caltech CS184 Winter2003 -- DeHon
24

Full Partitioning Experiment
• Give each state its own context
• Optimize logic in state separately
• Tools

– mustang, espresso, sis, Chortle
• Use:

– one-hot encodings for single context
• smallest/fastest

– dense for multicontext
• assume context select needs dense

13

Caltech CS184 Winter2003 -- DeHon
25

Look at

• Assume stay in context for a number of
LUT delays to evaluate logic/next state

• Pick delay from worst-case
• Assume single LUT-delay for context

selection?
– savings of 1 LUT-delay => comparable

time
• Count LUTs in worst-case state

Caltech CS184 Winter2003 -- DeHon
26Fu

ll
P a

rti
tio

n
(A

re
a

Ta
rg

e t
)

14

Caltech CS184 Winter2003 -- DeHon
27Fu

ll
Pa

rti
tio

n
(D

el
ay

Ta
rg

et
)

Caltech CS184 Winter2003 -- DeHon
28

Full Partitioning

• Full partitioning comes out better
– ~40% less area

• Note: full partition may not be optimal
area case
– e.g. intro example,

• no reduction in area or time beyond 2-context
implementation

• 4-context (full partition) just more area
– (additional contexts)

15

Caltech CS184 Winter2003 -- DeHon
29

Partitioning versus Contexts
(Area)

CSE
benchmark

Caltech CS184 Winter2003 -- DeHon
30

Partitioning versus Contexts
(Delay)

16

Caltech CS184 Winter2003 -- DeHon
31

Partitioning versus Contexts
(Heuristic)

• Start with dense mustang state
encodings

• Greedily pick state bit which produces
– least greatest area split
– least greatest delay split

• Repeat until have desired number of
contexts

Caltech CS184 Winter2003 -- DeHon
32

Partition to Fixed Number of
Contexts

N.B. - more realistic, device has fixed number of contexts.

17

Caltech CS184 Winter2003 -- DeHon
33

Extend Comparison to
Memory

• Fully local => compute with LUTs
• Fully partitioned => lookup logic

(context) in memory and compute logic

• How compare to fully memory?
– Simply lookup result in table?

Caltech CS184 Winter2003 -- DeHon
34

Memory FSM Compare
(small)

18

Caltech CS184 Winter2003 -- DeHon
35

Memory FSM Compare (large)

Caltech CS184 Winter2003 -- DeHon
36

Memory FSM Compare
(notes)

• Memory selected was “optimally” sized
to problem
– in practice, not get to pick memory

allocation/organization for each FSM
– no interconnect charged

• Memory operate in single cycle
– but cycle slowing with inputs

• Smaller for <11 state+input bits
• Memory size not affected by CAD

quality (FPGA/DPGA is)

19

Caltech CS184 Winter2003 -- DeHon
37

Control Granularity

Caltech CS184 Winter2003 -- DeHon
38

Control Granularity

• What if we want to run multiple of these
FSMs on the same component?

– Local

– Instruction

20

Caltech CS184 Winter2003 -- DeHon
39

Consider

• Two network data ports
– states: idle, first-datum, receiving, closing
– data arrival uncorrelated between ports

Caltech CS184 Winter2003 -- DeHon
40

Local Control Multi-FSM

• Not rely on instructions
• Each wired up independently
• Easy to have multiple FSMs

– (units of control)

21

Caltech CS184 Winter2003 -- DeHon
41

Instruction Control
• If FSMs advance orthogonally

– (really independent control)
– context depth => product of states

• for full partition
– I.e. w/ single controller (PC)

• must create product FSM
• which may lead to state explosion

– N FSMs, with S states => SN product states
– This example:

• 4 states, 2 FSMs => 16 state composite FSM

Caltech CS184 Winter2003 -- DeHon
42

Architectural Questions
• How many pinsts/controller?
• Fixed or Configurable assignment of

controllers to pinsts?
– …what level of granularity?

22

Caltech CS184 Winter2003 -- DeHon
43

Architectural Questions

• Effects of:
– Too many controllers?
– Too few controllers?
– Fixed controller assignment?
– Configurable controller assignment?

Caltech CS184 Winter2003 -- DeHon
44

Architectural Questions

• Too many:
– wasted space on extra controllers
– synchronization?

• Too few:
– product state space and/or underuse logic

• Fixed:
– underuse logic if when region too big

• Configurable:
– cost interconnect, slower distribution

23

Caltech CS184 Winter2003 -- DeHon
45

Control and FPGAs

• Local/single instruction not rely on
controller

• Potential strength of FPGA
• Easy to breakup capacity and deploy to

orthogonal tasks

• How processor handle? Efficiency?

Caltech CS184 Winter2003 -- DeHon
46

Control and FPGAs

• Data dependent selection
– potentially fast w/ local control compared to uP

– Can examine many bits and perform multi-way
branch (output generation) in just a few LUT
cycles

� µP requires sequence of operations

24

Caltech CS184 Winter2003 -- DeHon
47

Architecture Instr. Taxonomy

Caltech CS184 Winter2003 -- DeHon
48

Admin
• Final exercise

– Suggest Meet Wednesday (no lecture W)
– Also fillout EAS feedback sheets

• Feedback: retiming
– How improve assignment?

• Smaller pieces?

• Next term
– Text: Hennessey and Patterson

• Computer Architecture: A Quantitative Approach 3rd edition
• Not at Caltech Bookstore, order now…Amazon

25

Caltech CS184 Winter2003 -- DeHon
49

Big Ideas
[MSB Ideas]

• Control: where data effects instructions
(operation)

• Two forms:
– local control

• all ops resident => fast selection
– instruction selection

• may allow us to reduce instantaneous work
requirements

• introduce issues
– depth, granularity, instruction load time

Caltech CS184 Winter2003 -- DeHon
50

Big Ideas
[MSB-1 Ideas]

• Intuition => looked at canonical FSM case
– few context can reduce LUT requirements

considerably (factor dissimilar logic)
– similar logic more efficient in local control
– overall, moderate contexts (e.g. 8)

• exploits both properties
• better than extremes

– single context (all local control)
– full partition
– flat memory (except for smallest FSMs)

