# CS184b: <br> Computer Architecture [Single Threaded Architecture: abstractions, quantification, and optimizations] 

Day9: February 1, 2000
SuperScalar
Costs and Opportunities

## Today

- Issue Window
- Registers
- Bypass
- Ultrascalar


## Limit Studies

- Goal: understand how far you can go
- this case, how much ILP can find
- Remove current/artificial limits
- do full renaming
- arbitrary look ahead
- perfect control prediction
- Careful with assumptions
- can still be pessemistic
- is there another way to do it?

Caltech CS184-W Anotherway around the limitation?


## Window Size

- How many instructions forward do we look?
- Only look at next $=$ in-order issue



## Window Size


[Hennessy and Patterson 4.39]


## Operation Organization

- Consider Tree-structured calculation
- freedom in ordering
- consider:
- post-order traversal
- by levels from leaves
- where is parallelism?
- Storage cost?


## Cost?

- $\operatorname{Rsrc}_{\mathrm{i}} \neq \mathrm{Rdst}_{\mathrm{i}-1} ; \operatorname{Rsrc}_{\mathrm{i}} \neq \mathrm{Rdst}_{\mathrm{i}-2} ; \ldots$
- $\mathrm{O}\left(\mathrm{WS}^{2}\right)$ comparisons


## Cost?

- Anecdotal [Farrell, Fischer JSSC v33n5]
- DEC 20-instruction queue
- 4 instruction issue
- (80 physical registers)
$-10 \mathrm{~mm}^{2}$ in $0.35 \mu \mathrm{~m}$ ( $300 \mathrm{M} \lambda^{2}+$ )
$-600 \mathrm{MHz}=1.6 \mathrm{~ns}$


## Costs?

- Both DEC and "Quantifying" (also DEC)
- appear to use a scoreboarded scheme to avoid
- accept not issue until result computed?
- "Quantifyng" suggests:
- wakeup time $\propto \mathrm{IW}^{2} \times \mathrm{WS}^{2}$
- but assuming quadratic wire delay in length
- (never buffer wire)
- but WS=F(IW)
- certainly faster than linear time
$-\mathrm{A} \propto \mathrm{IW} \times \mathrm{WS}$


## Registers

- How many virtual registers needed?

[Hennessy and Patterson 4.43]


## Register Costs?

- First Order
- area linear in number of registers
- delay linear in number of registers
- Bank RF
- maybe sublinear delay
- at least square root number of registers
- wire delay sqrt of area


## RF and IW interaction

- Larger Issue (Decode)
- want to read/retire more registers per cycle
- RF ports $=3$ IW
$-\mathrm{A} \propto$ ports $*$ number
$-\ldots$ and number of registers $=\mathrm{F}(\mathrm{IW})$
- RF grows faster than linear


## Bypass: Control

- Control comparison
- every functional input (2 IW)
- get input from
- every pipestage (d) from issue produce to wb
- for every result producer (IW)
- Total comparisons: $\mathrm{d} \times \mathrm{IW}^{2}$


## Bypass: Interconnect

- Linear layout
- bypass span functional units and RF
- physical RF grows with IW
- read/write ports
- more physical registers to support IW
- FU bypass muxes grows with IW
- Consequently
- height grows with IW (IW ${ }^{2}$ ?)
- cycle grow with IW?


## Bypass: Interconnect

- "Quantifying"
- quadratic wire delay
- (but asymptotically, we can buffer)
- largest delay component calculated
- ( $>1 \mathrm{~ns}$ for $\mathrm{IW}=8$ )
- IW=8 about 5-6 times IW=4


## Different Solution

- These assume Number of Regs > IW
- If IW $>$ R, different approach...
- From Henry, Kuszmaul, et. Al.
- ARVLSI'99
- SPAA'99
- ISCA'00


## Consider Machine

- Each FU has a full RF
- Build network between FUs
- use network to connect produce/consume
- user register names to configure interconnect
- Signal data ready along network



## Ultrascalar concept

- Linear delay
- $\mathrm{O}(1)$ register cost / FU
- Complete renaming at each FU
- different set of registers
- so when say complete reg at each FU, that's only the logical registers


## Ultrascalar: cyclic prefix



Caltech CS184b Winter2001 -- DeHon

## Parallel Prefix

- Basic idea is one we saw with adders
- An FU will either
- produce a register (generate)
- or transmit a register (propagate)
- can do tree combining
- pair of FUs will either both propogate or will generate
- compute function by pair in one stage
- recurse to next stage
- get log-depth tree network connecting producer and Caltech CS184b Winter200nsumer


## Ultrascalar: cyclic prefix



Caltech CS184b Winter2001 -- DeHon

## Cyclic Prefix

- Gets delay down to $\log$ (WS)
- w/ linear layout, delay still linear
- Issue into, retire from Window in order
- serves
- rename
- shared RF
- issue
- bypass
- reorder


## Ultrascalar: layout



## Ultrascalar: asymptotics

- Assume $M(n)<O(\sqrt{ } n)$
- Area $\sim n \times R^{2}$
- Delay ~ ( $\sqrt{ } n) \times R$
- Claim can do
- Area ~n $\times$ R
- Delay $\sim \sqrt{ }(n \times R)$
- Memory grows faster, will dominate interconnect growth, hence area and delay
- get extra term for memory growth (like Rent's Rule) ${ }_{\text {Defton }}$


## UltraScalar:

- $0.25 \mu \mathrm{~m}$
- 128-window, 32 logical regs
- 64b ops?
- 4-issue
- delays <2ns
- comit, wakeup, schedule
- wire delay dominate logic
- area $\sim 1 G \lambda^{2}$ (? Includes all datapath)


## Solution for:

- Object/binary compatibility is paramount
- Performance is King
- Recompilation not an option
- Cost (area, energy) is no object


## Next Week

- ...an alternative way to exploit ILP
- rely on compiler and feedback
- Tuesday: VLIW/Fisher
- Thursday: EPIC


## (Semi?) Big Ideas

- Balance
- Size Matters
- Interconnect delay dominate
- As parameters grow
- watch tradeoffs
- widely different solutions prevail in different points in space (different asymptotes)

