CS184b:

Computer Architecture [Single Threaded Architecture: abstractions, quantification, and optimizations]

Day9: February 1, 2000 SuperScalar Costs and Opportunities

Caltech CS184b Winter2001 -- DeHon

1

Today

- Issue Window
- Registers
- Bypass
- Ultrascalar

Caltech CS184b Winter2001 -- DeHon

Limit Studies

- Goal: understand how far you can go
 - this case, how much ILP can find
- Remove current/artificial limits
 - do full renaming
 - arbitrary look ahead
 - perfect control prediction
- Careful with assumptions
 - can still be pessemistic
 - is there another way to do it?

Caltech CS184b-WAenother-way around the limitation?

Window Size How many instructions forward do we look? Only look at next = in-order issue Johnson Fig. 3.9 (32 issue window?)

Window Size

[64-issues Hennessy and Patterson 4.47]

Caltech CS184b Winter2001 -- DeHon

7

Operation Organization

- Consider Tree-structured calculation
 - freedom in ordering
 - consider:
 - post-order traversal
 - by levels from leaves
 - where is parallelism?
 - Storage cost?

Caltech CS184b Winter2001 -- DeHon

Cost?

- $Rsrc_i \neq Rdst_{i-1}$; $Rsrc_i \neq Rdst_{i-2}$;...
- O(WS²) comparisons

Caltech CS184b Winter2001 -- DeHon

0

Cost?

- Anecdotal [Farrell, Fischer JSSC v33n5]
 - DEC 20-instruction queue
 - 4 instruction issue
 - (80 physical registers)
 - $-~10mm^2~in~0.35\mu m~(300M\lambda^2+)$
 - -600 MHz = 1.6 ns

Caltech CS184b Winter2001 -- DeHon

Costs?

- Both DEC and "Quantifying" (also DEC)
 - appear to use a scoreboarded scheme to avoid
 - accept not issue until result computed?
- "Quantifyng" suggests:
 - wakeup time \propto IW²×WS²
 - but assuming quadratic wire delay in length
 - (never buffer wire)
 - but WS=F(IW)
 - certainly faster than linear time
- $-A \propto IW \times WS$ Caltech CS184b Winter2001 -- DeHon

11

Registers

• How many virtual registers needed?

[Hennessy and Patterson 4.43]

Caltech CS184b Winter2001 -- DeHon

Register Costs?

- First Order
 - area linear in number of registers
 - delay linear in number of registers
- Bank RF
 - maybe sublinear delay
 - at least square root number of registers
 - wire delay sqrt of area

Caltech CS184b Winter2001 -- DeHon

13

RF and IW interaction

- Larger Issue (Decode)
 - want to read/retire more registers per cycle
 - RF ports = 3 IW
 - A ∝ ports * number
 - ...and number of registers = F(IW)
- RF grows faster than linear

Caltech CS184b Winter2001 -- DeHon

Bypass: Control

- Control comparison
 - every functional input (2 IW)
 - get input from
 - every pipestage (d) from issue produce to wb
 - for every result producer (IW)
- Total comparisons: d×IW²

Caltech CS184b Winter2001 -- DeHon

15

Bypass: Interconnect

- Linear layout
 - bypass span functional units and RF
 - physical RF grows with IW
 - read/write ports
 - more physical registers to support IW
 - FU bypass muxes grows with IW
- Consequently
 - height grows with IW (IW²?)
 - cycle grow with IW?

Caltech CS184b Winter2001 -- DeHon

Bypass: Interconnect

- "Quantifying"
 - quadratic wire delay
 - (but asymptotically, we can buffer)
 - largest delay component calculated
 - (>1ns for IW=8)
 - IW=8 about 5-6 times IW=4

Caltech CS184b Winter2001 -- DeHon

17

Different Solution

- These assume Number of Regs > IW
- If IW>R, different approach...
- From Henry, Kuszmaul, et. Al.
 - ARVLSI'99
 - SPAA'99
 - ISCA'00

Caltech CS184b Winter2001 -- DeHon

Consider Machine

- Each FU has a full RF
- Build network between FUs
 - use network to connect produce/consume
 - user register names to configure interconnect
- Signal data ready along network

Caltech CS184b Winter2001 -- DeHon

Ultrascalar concept

- Linear delay
- O(1) register cost / FU
- Complete renaming at each FU
 - different set of registers
 - so when say complete reg at each FU, that's only the logical registers

Caltech CS184b Winter2001 -- DeHon

21

Parallel Prefix

- Basic idea is one we saw with adders
- An FU will either
 - produce a register (generate)
 - or transmit a register (propagate)
 - can do tree combining
 - pair of FUs will either both propagate or will generate
 - compute function by pair in one stage
 - recurse to next stage
 - get log-depth tree network connecting producer and consumer

Caltech CS184b Winter2001 -- DeHon

23

Cyclic Prefix

- Gets delay down to log(WS)
 - w/ linear layout, delay still linear
- Issue into, retire from Window in order
 - serves
 - rename
 - · shared RF
 - issue
 - bypass
 - reorder

Caltech CS184b Winter2001 -- DeHon

25

Ultrascalar: layout

Register paths not growing. Wide, but constant width

If Memory width $<\sqrt{n}$ area goes as n

wire goes as \sqrt{n}

Caltech CS184b Winter2001 -- DeHon

Ultrascalar: asymptotics

- Assume M(n)<O(\sqrt{n})
 - Area \sim n×R²
 - Delay ~ (\sqrt{n}) ×R
- Claim can do
 - Area \sim n×R
 - Delay ~ $\sqrt{(n \times R)}$
- Memory grows faster, will dominate interconnect growth, hence area and delay
 - get extra term for memory growth (like Rent's Rule)

Caltech CS184b Wmter2001)-- DeHon

27

UltraScalar:

- 0.25 μm
- 128-window, 32 logical regs
- 64b ops?
- 4-issue
- delays <2ns
 - comit, wakeup, schedule
 - wire delay dominate logic
- area $\sim 1 \text{G}\lambda^2$ (? Includes all datapath)

Caltech CS184b Winter2001 -- DeHon

Solution for:

- Object/binary compatibility is paramount
- Performance is King
- Recompilation not an option
- Cost (area, energy) is no object

Caltech CS184b Winter2001 -- DeHon

29

Next Week

- ...an alternative way to exploit ILP
- rely on compiler and feedback
- Tuesday: VLIW/Fisher
- Thursday: EPIC

Caltech CS184b Winter2001 -- DeHon

(Semi?) Big Ideas

- Balance
- Size Matters
- Interconnect delay dominate
- As parameters grow
 - watch tradeoffs
 - widely different solutions prevail in different points in space (different asymptotes)

Caltech CS184b Winter2001 -- DeHon