
1

Caltech CS184b Winter2001 -- DeHon 1

CS184b:
Computer Architecture

[Single Threaded Architecture:
abstractions, quantification, and

optimizations]

Day8: January 30, 2000

Exploiting Instruction-Level Parallelism

Caltech CS184b Winter2001 -- DeHon 2

Today

• Reducing Control Costs
– Branch Prediction

– Branch Target Buffer

– Conditional Operations

– Speculation

2

Caltech CS184b Winter2001 -- DeHon 3

Control Flow

• Previously saw data hazards on control
force stalls
– for multiple cycles

• With superscalar, may be issuing multiple
instructions per cycle

• Makes stalls even more expensive
– wasting n slots per cycle

– e.g.
• with 7 instructions / branch

• issue 7 instructions, hit branch, stall for instructions
to complete...

Caltech CS184b Winter2001 -- DeHon 4

Control/Branches

• Cannot afford to stall on branches for
resolution

• Limit parallelism to basic block
– average run length between branches

3

Caltech CS184b Winter2001 -- DeHon 5

Idea

• Predict branch direction

• Execute as if that’s correct

• Commit/discard results after know branch
direction

• Use ideas seen for precise exceptions to
separate
– working values

– architecture state

Caltech CS184b Winter2001 -- DeHon 6

Goal

• Correctly predicted branches run as if they
weren’t there (noops)

• Maximize the expected run length between
mis-predicted branches

4

Caltech CS184b Winter2001 -- DeHon 7

Expected Run Length

• E(l) = L1 + L2*P1+L3*P1*P2+L4*P1*P2*P3

• Li=l, Pi=P

• E(l)=l(1+p+p2+p3+…)

• E(l)=l/(1-p)

• E(l) = 1/(probability of mispredict)

Caltech CS184b Winter2001 -- DeHon 8

Expected Run Length

• P=0.9 10l

• p=0.95 20l

• p=0.98 50l

• p=0.99 100l

• Halving mispredict rate, doubles run length

5

Caltech CS184b Winter2001 -- DeHon 9

IPC

• Run for E(l) instructions

• Then mispredict
– waste ~ pipeline delay cycles (and all work)

• Pipe delay: d

• Base IPC: n

• E(l)/n cycles issue n

• d cycles issue nothing useful

• IPC=E(l)/(E(l)/n+d)=n/(1+dn/E(l))

Caltech CS184b Winter2001 -- DeHon 10

Branch Prediction

• Previous runs

• (dynamic) History

• Correlated

6

Caltech CS184b Winter2001 -- DeHon 11

Previous Run

• Hypothesis: branch behavior is largely a
characteristic of the program.
– Can use data from previous runs (different

input data set)

– to predict branch behavior

• Fisher: Instructions/mispredict: 40-160
– even with different data sets

Caltech CS184b Winter2001 -- DeHon 12

Data Prediction

• Example shows value (and validity) of
feedback
– run program

– measure behavior

– use to inform compiler, generate better code

• Static/procedural analysis
– often cannot yield enough information

– most behavioral properties are undecidable

7

Caltech CS184b Winter2001 -- DeHon 13

Branch History Table

• Hypothesis: we can predict the behavior of
a branch based on it’s recent past behavior.
– If a branch has been taken, we’ll predict it’s

taken this time.

• To exploit dynamic strength, would like to
be responsive to changing program
behavior.

Caltech CS184b Winter2001 -- DeHon 14

Branch History Table

• Implementation
– Saturating counter

• count up branch taken; down on branch not taken

– Predict direction based on majority (which side
of mid-point) of past branches

• Saturation
– keeps counter small (cheap)

• typically 2b

– limits amount of history kept
• time to “learn” new behavior

8

Caltech CS184b Winter2001 -- DeHon 15

Correlated Branch Prediction

• Hypothesis: branch directions are highly
correlated
– a branch is likely to depend on branches which

occurred before it.

• Implementation
– look at last m branches

• shift register on branch directions

– use a separate counter to track each of the 2m

cases

– contain cost: only keep a small number of
entries and allow aliasing

Caltech CS184b Winter2001 -- DeHon 16

Branch Prediction

• …whole host of schemes and variations
proposed in literature

9

Caltech CS184b Winter2001 -- DeHon 17

Prediction worked for Direction...

• Note:
– have to decode instruction to figure out if it’s a

branch

– then have to perform arithmetic to get branch
target

• So, don’t know where the branch is going
until cycle (or several) after fetch
– IF ID EX

Caltech CS184b Winter2001 -- DeHon 18

Branch-Target Buffer

• Take it one step back and predict target
address

• Cache
– in parallel with Memory Fetch (IF)

– stores predicted target PC
• and branch prediction

– tagged with PC to avoid aliasing

10

Caltech CS184b Winter2001 -- DeHon 19

Reducing Number of Branching

• A mispredicted branch costs more than a
few cycles in these wide-issue machines
– potentially n*d

• Especially in cases of reconvergent flow
and even branch probabilities

Caltech CS184b Winter2001 -- DeHon 20

Conditional Operations

• Idea: create guarded operations
– only change register if some result holds

• e.g.
– 8b saturating add

• c=a+b

• if (t1>255) c=255

• if (t1<0) c=0

ADD R1,R2,R3
SUB R4,R1,#255
CMOVP R1,#255,R4
COMVN R1,#0,R1

11

Caltech CS184b Winter2001 -- DeHon 21

Conditional Operation Prospect

• For unpredictable branch (p~=0.5)
– E(wasted issue slots) = p*n*d (n*d/2)

• With conditional move
– assume l cycles inside conditional clauses

– one sided if:
• E(wasted) = p*l (l/2)

– two sided (both length l)
• E(wasted) = l

• Net benefit for short guarded blocks
– on wide issue machines

Caltech CS184b Winter2001 -- DeHon 22

Speculation

• Branch prediction allows us to continue
executing

• still have to deal with branch being wrong

• In simple pipelined ISA
– outstanding branch resolved before writeback

12

Caltech CS184b Winter2001 -- DeHon 23

Speculation

• Wide-issue ISA?
– Likely to have more instructions in flight than

mean latency between branches (nd>l)

– to exploit parallelism, need to continue
computing assuming the chosen path is correct

• means making result values visible to subsequent
instructions which may be wrong if control flow
goes another way

Caltech CS184b Winter2001 -- DeHon 24

Old Problem

• Mostly the same problem as precise
exceptions
– want to continue computing forward with

tenative values

– want to preserve old state so can roll-back to
known state

13

Caltech CS184b Winter2001 -- DeHon 25

Revisit Re-Order

IF ID
Reorder

Bypass

EX

ALU

MPY

LD/ST

RF

Complex (big)
 bypass logic.

Caltech CS184b Winter2001 -- DeHon 26

Speculation and Re-Order Buffer

• Compute and bypass values from re-order
buffer

• At end of re-order buffer
– commit to RF (architetural state) in proper

program order after branches resolved

– if branch wrong,
• nullify it’s effect (results predicated upon)

– flush re-order buffer (pipeline)

• direct control flow back to correct branch direction

14

Caltech CS184b Winter2001 -- DeHon 27

Details

• As before,
– exception delivery must be deferred until can

commit instruction

– memory operations require re-
order/bypass/commit as well

• History/Future File work
– …but transfer time may be more critical in this

case

Caltech CS184b Winter2001 -- DeHon 28

Register Update Unit (RUU)

• Simplescalar uses this

• FIFO unit for instruction management
serves for both issue and in-order commit

• Decode: fills empty slots

• Issue: picks next set of runnable instructions

• Execution results return here

• Commit: completed instructions in order
from head of FIFO

15

Caltech CS184b Winter2001 -- DeHon 29

RUU

IF
Decode
Queue

EX

ALU

MPY

LD/ST

RF

RUU

Caltech CS184b Winter2001 -- DeHon 30

RUU

• Needs to hold all outstanding instructions
– from: considering for issue

– to: completion and final RF writeback

• Needs to be relatively large

• Complex?

16

Caltech CS184b Winter2001 -- DeHon 31

Reading

• Thursday: available ILP, costs
– finish HP4 (at least 4.7)

– quantifying

• Tuesday: VLIW
– Fisher/VLIW and retrospective

Caltech CS184b Winter2001 -- DeHon 32

Big Ideas

• Interruptions in Control Flow limit our
ability to exploit parallelism

• There is structure in programs
– predictability in control flow

• Make the common case fast

• Predict/guess common case control flow
– to generate larger blocks

• Nullify effects of erroneous instructions
when guess wrong

