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Terminology

e Primitive Instruction (pinst)

— Collection of bitswhich tell asingle bit-
processing element what to do

— Includes:
* select compute operation
* input sources in space
— (interconnect)
* input sourcesin time

— (retiming)
0000 00 010 11 0110
net0 add mem slot#6
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Instructions

* Distinguishing feature of programmable
architectures?

— Instructions -- bits which tell the device how to
behave

0000 00 010 11 0110
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Single ALU Datapath
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| nstructions

 Primitive operations for constructing
(describing) a computation
* Need to do?
— Interconnect (space and time)
— Compute (intersect bits)
— Control (select operations to run)
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Detail Datapath
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uCoded / Decoded

e uCoded
— Bitsdirectly control datapath
— Horizontal vs. Vertical
— Not abstract from implementation
» Decoded
— more compressed
— only support most common operations
— abstract from implementation
— time/area to decode to datapath control signals
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H&P View

* |SA design done?

» Not many opportunities to completely
redefine

* Many things mostly settled
— at least until big technology perturbations arrive

» Implementation (UArch) is where most of
the actionis

» Andre: maybe we' ve found a nice local
minima...
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H& P Issues

Registers/stack/accumul ator
— # operands, memory ops in instruction

Addressing Modes
Operations

Control flow
Primitive Data types
Encoding
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Regi ster/stack/accumul ator

 Driven largely by cost model
— ports into memory
— latency of register versus memory
— instruction encoding (bits to specify)
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Regi ster/stack/accumul ator

* Today: Load-Store, General Register arch.

* Registers more freedom of addressing than
stack

» Load into register, then operate
— not much longer than memory address
— usually use more than once (net reduction)
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Addressing Modes

o Minimal:
— immediate
— register
— register indirect
» Others:
— displacement
— indirect (double derference)
— auto increment/decrement ( p[x++]=y)
— scaled
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Addressing Modes

* More/ More capable
— lessinstructions

— potentially longer instructions
* bitsand cycletime
— many operations (complicate atomicity of
instructions)
« Add (R2)+,(R3)+,(R4)+
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Operations

e ALU/Arithmetic
—add, sub, or, and, xor
— compare

* |nterconnect
— move registers
— load, store

» Control
—jump
— conditional branch

catecn csies PFOCEAUrE call/return
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Operations. ALU

e Small set of SIMD operations

» Coversvery small fraction of the space of
al w w®w
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Operations. Branching

* Modédls:

— ops set condition codes, branch on condition
codes

— compare result to register, branch on register
Zero or one

— comparison part of branch
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Operations. Procedure call/return

o ?Saveregisters?
» Update PC
— call target
— return address
» Change stack and frame pointers
— storeold
—install new
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Operations: Procedure call/return

e Question: How much should instruction
do?

 Lesson: High variance in work needs to be
done
— which registers need to save
— best way to transfer arguments to procedures

— better to expose primitives to the compiler and
let it specialize the set of operationsto the
particular call
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Data Types

Powers of two from bytes to double worlds?
—8,16, 32,64

— (very implementation driven decision)
Floating Point types

Are pointers integers?

Alignment requirements
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Encoding

* Variablevs. Fixed

» How complex is the decoding?

— Fields in the same place...or have to be
routed/muxed?

— Sequential requirementsin decode?
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Detail Datapath
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EIlOdIIIQ' RISC/Modern
.
S
I-type instruction
Encodes: Loads and stores of bytes, words, half words
All immediates (rd « rs1 op immediate)
Conditional branch instructions (rs1 is register, rd unused)
Jump register, jump and link register
(rd = 0, rs1 = destination, immediate = 0)
R-type instruction
Register—register ALU operations: rd « rs1 func rs2
Function encodes the data path operation: Add, Sub,
Read/write special registers and moves
J-type instruction
6 26
Jump and jump and link
Trap and return from exception
) 24
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Operation Complexity

» Contradiction?
— Providing primitives
— including floating point ops
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Loca Minima?

o Sdf-Fulfilling?
— How would we quantitatively validate need for
anew operation?

—[cue: bridge story]
— Thisiswhat we use as primitives

— Funny, we don’t find a need for other
primitives...
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Themes

Common case fast

Provide primitives (building blocks)
L et compiler specialize to particular
operation

Make decode/operation simple so
implementation is fast

Caltech CS184b Winter2001 -- DeHon

27

Compilers

* 1960® 1990 shift
— increasing capability and sophistication of
compilers

-eg.
* inter-procedural optimization
* register assignment (register usage)
« strength reduction
« dataflow analysis and instruction reordering
* (some progress) alias analysis

Caltech CS184b Winter2001 -- DeHon

28

14



Compilers

» Gap between programmer and Architecture

* Increasingly bridged by compiler

 Lessneed to make assembly language
human programmable

« More opportunity for compiler to specialize,
partial evaluate
— (do stuff at compile time to reduce runtime)

» RISC: “Relegate Interesting Stuff to
Compiler”
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| mplementation Significance

» André Agree: Implementation issues are
significant in the design of 1SA

» Many of these issues are more interesting
when we discuss in light of implementation
issues

Caltech CS184b Winter2001 -- DeHon

30

15



|SA Driven by

I mplementation costs
Compiler technology
Application structure

Can't do good architecture in isolation from
any of these issues.
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Upcoming

* Next Time:
—discuss RISC CISC
 Following that
— pipelining ISA
— (day ahead of original schedule since got today
back)
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Big Ideas

Common Case

Primitives

Highly specialized instructions brittle
Design pulls

— simplify processor implementation

— simplify coding

Orthogonallity (limit special cases)

o Compiler: fill in gap between user and
hardware architecture

Caltech CS184b Winter2001 -- DeHon

33

17



