
1

Caltech CS184b Winter2001 -- DeHon 1

CS184b:
Computer Architecture

[Single Threaded Architecture:
abstractions, quantification, and

optimizations]

Day3: January 11, 2000

Instruction Set Architecture

Caltech CS184b Winter2001 -- DeHon 2

Today

• Datapath review

• H&P view

• Questions about

• Themes

• Compilers

2

Caltech CS184b Winter2001 -- DeHon 3

Terminology

• Primitive Instruction (pinst)
– Collection of bits which tell a single bit-

processing element what to do

– Includes:
• select compute operation

• input sources in space
– (interconnect)

• input sources in time
– (retiming)

Compute

0000 00 010 11 0110
 net0 add mem slot#6

Caltech CS184b Winter2001 -- DeHon 4

Instructions

• Distinguishing feature of programmable
architectures?
– Instructions -- bits which tell the device how to

behave

Compute

0000 00 010 11 0110
 net0 add mem slot#6

3

Caltech CS184b Winter2001 -- DeHon 5

Single ALU Datapath

Caltech CS184b Winter2001 -- DeHon 6

Datapath

[Datapath from PH (Fig. 5.1)]

4

Caltech CS184b Winter2001 -- DeHon 7

Instructions

• Primitive operations for constructing
(describing) a computation

• Need to do?
– Interconnect (space and time)

– Compute (intersect bits)

– Control (select operations to run)

Caltech CS184b Winter2001 -- DeHon 8

Detail Datapath

[Datapath from PH (Fig. 5.13)]

5

Caltech CS184b Winter2001 -- DeHon 9

uCoded / Decoded

• uCoded
– Bits directly control datapath

– Horizontal vs. Vertical

– Not abstract from implementation

• Decoded
– more compressed

– only support most common operations

– abstract from implementation

– time/area to decode to datapath control signals

Caltech CS184b Winter2001 -- DeHon 10

H&P View

• ISA design done?

• Not many opportunities to completely
redefine

• Many things mostly settled
– at least until big technology perturbations arrive

• Implementation (uArch) is where most of
the action is

• Andre: maybe we’ve found a nice local
minima...

6

Caltech CS184b Winter2001 -- DeHon 11

H&P Issues

• Registers/stack/accumulator
– # operands, memory ops in instruction

• Addressing Modes

• Operations

• Control flow

• Primitive Data types

• Encoding

Caltech CS184b Winter2001 -- DeHon 12

Register/stack/accumulator

• Driven largely by cost model
– ports into memory

– latency of register versus memory

– instruction encoding (bits to specify)

7

Caltech CS184b Winter2001 -- DeHon 13

Register/stack/accumulator

• Today: Load-Store, General Register arch.

• Registers more freedom of addressing than
stack

• Load into register, then operate
– not much longer than memory address

– usually use more than once (net reduction)

Caltech CS184b Winter2001 -- DeHon 14

Addressing Modes

• Minimal:
– immediate

– register

– register indirect

• Others:
– displacement

– indirect (double derference)

– auto increment/decrement (p[x++]=y)

– scaled

8

Caltech CS184b Winter2001 -- DeHon 15

Addressing Modes

• More / More capable
– less instructions

– potentially longer instructions
• bits and cycle time

– many operations (complicate atomicity of
instructions)

• Add (R2)+,(R3)+,(R4)+

Caltech CS184b Winter2001 -- DeHon 16

Operations

• ALU/Arithmetic
– add, sub, or, and, xor

– compare

• Interconnect
– move registers

– load, store

• Control
– jump

– conditional branch

– procedure call/return

9

Caltech CS184b Winter2001 -- DeHon 17

Operations: ALU

• Small set of SIMD operations

• Covers very small fraction of the space of
all w×w→w

Caltech CS184b Winter2001 -- DeHon 18

Operations: Branching

• Models:
– ops set condition codes, branch on condition

codes

– compare result to register, branch on register
zero or one

– comparison part of branch

10

Caltech CS184b Winter2001 -- DeHon 19

Operations: Procedure call/return

• ? Save registers?

• Update PC
– call target

– return address

• Change stack and frame pointers
– store old

– install new

Caltech CS184b Winter2001 -- DeHon 20

Operations: Procedure call/return

• Question: How much should instruction
do?

• Lesson: High variance in work needs to be
done
– which registers need to save

– best way to transfer arguments to procedures

– better to expose primitives to the compiler and
let it specialize the set of operations to the
particular call

11

Caltech CS184b Winter2001 -- DeHon 21

Data Types

• Powers of two from bytes to double worlds?
– 8, 16, 32, 64

– (very implementation driven decision)

• Floating Point types

• Are pointers integers?

• Alignment requirements

Caltech CS184b Winter2001 -- DeHon 22

Encoding

• Variable vs. Fixed

• How complex is the decoding?
– Fields in the same place…or have to be

routed/muxed?

– Sequential requirements in decode?

12

Caltech CS184b Winter2001 -- DeHon 23

Detail Datapath

[Datapath from PH (Fig. 5.13)]

Caltech CS184b Winter2001 -- DeHon 24

Enoding: RISC/Modern

[DLX Instruction Format from HP (Fig. 2.21)]

13

Caltech CS184b Winter2001 -- DeHon 25

Operation Complexity

• Contradiction?
– Providing primitives

– including floating point ops

Caltech CS184b Winter2001 -- DeHon 26

Local Minima?

• Self-Fulfilling?
– How would we quantitatively validate need for

a new operation?

– [cue: bridge story]
– This is what we use as primitives

– Funny, we don’t find a need for other
primitives…

14

Caltech CS184b Winter2001 -- DeHon 27

Themes

• Common case fast

• Provide primitives (building blocks)

• Let compiler specialize to particular
operation

• Make decode/operation simple so
implementation is fast

Caltech CS184b Winter2001 -- DeHon 28

Compilers

• 1960→1990 shift
– increasing capability and sophistication of

compilers

– e.g.
• inter-procedural optimization

• register assignment (register usage)

• strength reduction

• dataflow analysis and instruction reordering

• (some progress) alias analysis

15

Caltech CS184b Winter2001 -- DeHon 29

Compilers

• Gap between programmer and Architecture

• Increasingly bridged by compiler

• Less need to make assembly language
human programmable

• More opportunity for compiler to specialize,
partial evaluate
– (do stuff at compile time to reduce runtime)

• RISC: “Relegate Interesting Stuff to
Compiler”

Caltech CS184b Winter2001 -- DeHon 30

Implementation Significance

• André Agree: Implementation issues are
significant in the design of ISA

• Many of these issues are more interesting
when we discuss in light of implementation
issues

16

Caltech CS184b Winter2001 -- DeHon 31

ISA Driven by

• Implementation costs

• Compiler technology

• Application structure

• Can’t do good architecture in isolation from
any of these issues.

Caltech CS184b Winter2001 -- DeHon 32

Upcoming

• Next Time:
– discuss RISC CISC

• Following that
– pipelining ISA

– (day ahead of original schedule since got today
back)

17

Caltech CS184b Winter2001 -- DeHon 33

Big Ideas

• Common Case

• Primitives

• Highly specialized instructions brittle

• Design pulls
– simplify processor implementation

– simplify coding

• Orthogonallity (limit special cases)

• Compiler: fill in gap between user and
hardware architecture

