

Themes for Quarter

• Recurring

- "cached" answers and change
- merit analysis (cost/performance)
- dominant/bottleneck resource requirements
- structure/common case
- New/new focus
 - measurement
 - abstractions/semantics
 - abstractions 0, 1, infinity
 - dynamic data/event handling (vs. static)

9

Caltech CS184<u>b</u> wpredictability (avg. vs. worst case)

Architecture distinguished from Implementation

- IA32 architecture vs.
 80486DX2, AMD K5, Intel Pentium-II-700
- VAX architectures vs.
 - 11/750, 11/780, uVax-II
- PowerPC vs.
 - PPC 601, 604, 630 …
- Alpha vs.
 - EV4, 21164, 21264, ...
- Admits to many different implementations

Caltech CS184 Wisingle architecture

Example Distinction: Memory Implementation

- Abstraction: large-flat memory
- Implementation:
 - multiple-levels of caches, varying sizes
 - virtual memory, with data residing on disk
 - relocation of physical memory placement
- One simple abstraction
 - hides details of implementation/timing
- Many implementations

Caltech CS184b Winter201 - gehon sts, performance, technology

Why? • What's the value of this distinction? • Why do we have it? • What does it cost? Caltech CS184b Winter2001 -- DeHon

14

Pragmatic: Binary vs. Source Compatibility

- For various software engineering reasons (failures?)
 - source notoriously bad/problematic to port to new machine
 - entire application not all packaged up in one place
 - must find compatible libraries, compiler, compiler options, header files...

19

20

• different (newer) compilers give different results

Caltech CS184b Winter2001 -- DeHon

Pragmatic: Binary vs. Source Compatibility

- For various software engineering reasons (failures?)
- People generally more comfortable with binary compatibility
- ABI/Binary architectural definition smaller/tighter and more well defined?
- André: Shouldn't have to be this way...but that's where we are today

Caltech CS184b Winter2001 -- DeHon

Fixed Points

- Must "fix" the interface
- Trick is picking what to expose in the interface and fix, and what to hide
- What are the "fixed points?"
 - how you describe the computation
 - primitive operations the machine understands

21

- primitive data types
- interface to memory, I/O
- interface to system routines?

Caltech CS184b Winter2001 -- DeHon

Conventional, Single-Threaded Abstraction

- Single, large, flat memory
- sequential, control-flow execution
- instruction-by-instruction sequential execution
- atomic instructions
- single-thread "owns" entire machine - isolation
- byte addressability

• unbounded memory, call depth tech CS184b Winter2001 -- DeHon

Big Ideas

- Architectural abstraction
 - define the fixed points
 - stable abstraction to programmer
 - admit to variety of implementation
 - ease adoption/exploitation of new hardware
 - reduce human effort

Caltech CS184b Winter2001 -- DeHon