
1

Caltech CS184b Winter2001 -- DeHon 1

CS184b:
Computer Architecture

[Single Threaded Architecture:
abstractions, quantification, and

optimizations]

Day15: February 27, 2000

Binary Translation

Caltech CS184b Winter2001 -- DeHon 2

Today

• Problem

• Idea

• Complications

• Strategy

• ? Success?

2

Caltech CS184b Winter2001 -- DeHon 3

Problem

• Lifetime of programs >> lifetime of piece of
hardware (technology generation)

• Getting high performance out of old, binary
code in hardware is expensive
– superscalar overhead…

• Recompilation not viable

– only ABI seems well enough defined; captures
and encapsulates whole program

• There are newer/better architectures that can
exploit hardware parallelism

Caltech CS184b Winter2001 -- DeHon 4

Idea

• Treat ABI as a source language
– the specification

• Cross compile (translate) old ISA to new
architecture (ISA?)

• Do it below the model level
– user doesn’t need to be cognizant of translation

• Run on simpler/cheaper/faster/newer
hardware

3

Caltech CS184b Winter2001 -- DeHon 5

Complications

• User visibility

• Preserving semantics
– e.g. condition code generation

• Interfacing
– preserve visible machine state

– interrupt state

• Finding the code
– self-modifying/runtime generated code

– library code

Caltech CS184b Winter2001 -- DeHon 6

Base

• Each operation has a meaning
– behavior

– affect on state of machine

• stws r29, 8(r8)
– tmp=r8+8

– store r29 into [tmp]

• add r1,r2,r3
– r1=(r2+r3) mod 231

– carry flag = (r2+r3>= 231)

4

Caltech CS184b Winter2001 -- DeHon 7

Capture Meaning

• Build flowgraph of instruction semantics
– not unlike the IR (intermediate representation)

for a compiler
• what use to translate from a high-level language to

ISA/machine code

– e.g. IR saw for Bulldog (trace scheduling)

Caltech CS184b Winter2001 -- DeHon 8

Optimize

• Use IR/flowgraph
– eliminate dead code

• esp. dead conditionals

• e.g. carry set which is not used

– figure out scheduling flexibility
• find ILP

5

Caltech CS184b Winter2001 -- DeHon 9

Trace Schedule

• Reorganize code

• Pick traces as linearize

• Cover with target machine operations

• Allocate registers
– (rename registers)

– may have to preserve register assignments at
some boundaries

• Write out code

Caltech CS184b Winter2001 -- DeHon 10

Details

• Seldom instruction→instruction
transliteration
– extra semantics (condition codes)

– multi-instruction sequences
• loading large constants

• procedure call return

– different power
• offset addressing?,

• compare and branch vs. branch on register

• Often want to recognize code sequence

6

Caltech CS184b Winter2001 -- DeHon 11

Complications

• How do we find the code?
– Known starting point

– ? Entry points

– walk the code

– …but, ultimately, executing the code is the
original semantic definition

• may not exist until branch to...

Caltech CS184b Winter2001 -- DeHon 12

Finding the Code

• Problem: can’t always identify statically

• Solution: wait until “execution” finds it
– delayed binding

– when branch to a segment of code,
• certainly know where it is

• and need to run it

– translate code when branch to it
• first time

• nth-time?

7

Caltech CS184b Winter2001 -- DeHon 13

Common Prospect

• Translating code is large fixed cost
– but has low incremental cost on each use

– hopefully comparable to or less than running
original on old machine

• Interpreting/Emulating code may be faster
than “compiling” it
– if the code is run once

• Which should we do?

Caltech CS184b Winter2001 -- DeHon 14

Optimization Prospects
• Translation vs. Emulation

– Ttrun = Ttrans+nTop

– Ttrns >Tem_op > Top

• If compute long enough
– nTop>>Ttrans

– → amortize out load

8

Caltech CS184b Winter2001 -- DeHon 15

Competitive Approach

• Run program emulated

• When a block is run “enough”, translate

• Consider
– Nthresh Temop = Ttranslate

• Always w/in factor of two of optimal
– if N<Nthresh optimal

– if N=Nthresh paid extra Ttranslate =2×optimal

– as N>>Nthresh extra time amortized out with
translation overhead

• think Ttranslate ~=2Ttranslate

Caltech CS184b Winter2001 -- DeHon 16

On-the-fly Translation Flow

• Emulate operations

• Watch frequency of use on basic blocks

• When run enough,
– translate code

– save translation

• In future, run translated code for basic block

9

Caltech CS184b Winter2001 -- DeHon 17

Translation “Cache”

• When branch
– translate branch target to new address

– if hit, there is a translation,
• run translation

– if miss, no translation
• run in emulation (update run statistics)

Caltech CS184b Winter2001 -- DeHon 18

Alternately/Additionally

• Rewrite branch targets so address translated
code sequence
– when emulator finds branch from translated

sequence to translated sequence

– update the target address of the branching
instruction to point to the translated code

10

Caltech CS184b Winter2001 -- DeHon 19

Self-Modifying Code

• Mark pages holding a translated branch as
read only

• Take write fault when code tries to write to
translated code

• In fault-handler, flush old page translation

Caltech CS184b Winter2001 -- DeHon 20

Precise Exceptions

• Again, want exception visibility relative to
simple, sequential model
– …and now old instruction set model

• Imposing ordering/state preservation is
expensive

11

Caltech CS184b Winter2001 -- DeHon 21

Precise Exceptions

• Modern BT technique [hardware support]
– “backup register” file

– commit/rollback of register file

– commit on memories

– on rollback, recompute preserving precise state
• drop back to emulation?

• …active work on software-only solutions
– e.g. IBM/WBT’00

Caltech CS184b Winter2001 -- DeHon 22

Remarkable Convergence?

• Aries: HP PA-RISC→IA-64
– new architecture

• IBM: PowerPC→BOA
– ultra-high clock rate architecture? (2GHz)

• IBM claims 50% improvement over scaling?

• 700ps = 1.4GHz in 0.18µm

• Transmeta: x86 →Crusoe
– efficient architecture, avoid x86 baggage

12

Caltech CS184b Winter2001 -- DeHon 23

Remarkable Convergence?

• All doing dynamic translation
– frequency based

• To EPIC/VLIW architectures

Caltech CS184b Winter2001 -- DeHon 24

Performance
[CAVEAT:
 trade magazine,
 numbers for
 system]

13

Caltech CS184b Winter2001 -- DeHon 25

Academic Static
 Binary Translation

[Cifuentes et. al., Binary Translation Workshop 1999]

Caltech CS184b Winter2001 -- DeHon 26

Academic/Static BT

[Cifuentes et. al., Binary Translation Workshop 1999]

14

Caltech CS184b Winter2001 -- DeHon 27

Academic/Dynamic BT

[Ung+Cifuentes, Binary Translation Workshop 2000]

Caltech CS184b Winter2001 -- DeHon 28

Upcoming

• Next Class (Last): Thursday, March 8th
– no class this Thursday

– no class Tuesday (week from today)

• Want to see:
– assignments 6, 7, 8

– finished by next class (3/8)

15

Caltech CS184b Winter2001 -- DeHon 29

Big Ideas

• Well-defined model
– High value for longevity

– Preserve semantics of model

– How implemented irrelevant

• Hoist work to earliest possible binding time
– dependencies, parallelism, renaming

– hoist ahead of execution
• ahead of heavy use

– reuse work across many uses

• Use feedback to discover common case

