
1

Caltech CS184b Winter2001 -- DeHon 1

CS184b:
Computer Architecture

[Single Threaded Architecture:
abstractions, quantification, and

optimizations]

Day14: February 22, 2000

Virtual Memory

Caltech CS184b Winter2001 -- DeHon 2

Today

• Problems
– memory size

– multitasking

• Different from caching?

• TLB

• co-existing with caching

2

Caltech CS184b Winter2001 -- DeHon 3

Problem 1:

• Real memory is finite

• Problems we want to run are bigger than the
real memory we may be able to afford…
– larger set of instructions / potential operations

– larger set of data

• Given a solution that runs on a big machine
– would like to have it run on smaller machines,

too
• but maybe slower / less efficiently

Caltech CS184b Winter2001 -- DeHon 4

Opportunity 1:

• Instructions touched < Total Instructions

• Data touched
– not uniformly accessed

– working set < total data

– locality
• temporal

• spatial

3

Caltech CS184b Winter2001 -- DeHon 5

Problem 2:

• Convenient to run more than one program at
a time on a computer

• Convenient/Necessary to isolate programs
from each other
– shouldn’t have to worry about another program

writing over your data

– shouldn’t have to know about what other
programs might be running

– don’t want other programs to be able to see
your data

Caltech CS184b Winter2001 -- DeHon 6

Problem 2:

• If share same address space
– where program is loaded (puts its data) depends

on other programs (running? Loaded?) on the
system

• Want abstraction
– every program sees same machine abstraction

independent of other running programs

4

Caltech CS184b Winter2001 -- DeHon 7

One Solution

• Support large address space

• Use cheaper/larger media to hold complete
data

• Manage physical memory “like a cache”

• Translate large address space to smaller
physical memory

• Once do translation
– translate multiple address spaces onto real

memory

– use translation to define/limit what can touch

Caltech CS184b Winter2001 -- DeHon 8

Conventionally

• Use magnetic disk for secondary storage

• Access time in ms
– e.g. 9ms

– 9 million cycles latency

• bandwidth ~100Mb/s
– vs. read 64b data item at GHz clock rate

• 64Gb/s

5

Caltech CS184b Winter2001 -- DeHon 9

Like Caching?

• Cache tags on all of Main memory?

• Disk Access Time >> Main Memory time

• Disk/DRAM >> DRAM/L1 cache
– bigger penalty for being wrong

• conflict, compulsory

• …also historical
– solution developed before widespread

caching...

Caltech CS184b Winter2001 -- DeHon 10

Mapping

• Basic idea
– map data in large blocks (pages)

– use memory table

– to record physical memory location for each,
mapped memory block

6

Caltech CS184b Winter2001 -- DeHon 11

Address Mapping

[Hennessy and Patterson 5.36]

Caltech CS184b Winter2001 -- DeHon 12

Mapping

• 32b address space

• 4Kb pages

• 232/212=220=1M address mappings

• Very large translation table

7

Caltech CS184b Winter2001 -- DeHon 13

Translation Table

• Traditional solution
– from when 1M words >= real memory

– break down page table hierarchically

– divide 1M entries into 4*1M/4K=1K pages

– use another translation table to give location of
those 1K pages

– …multi-level page table

Caltech CS184b Winter2001 -- DeHon 14

Page Mapping

[Hennessy and Patterson 5.43]

8

Caltech CS184b Winter2001 -- DeHon 15

Page Mapping Semantics

• Program wants value contained at A

• pte1=top_pte[A[32:24]]

• if pte1.present
– ploc=pte1[A[23:12]]

– if ploc.present
• Aphys=ploc<<12 + (A [11:0])

• Give program value at Aphys

– else … load page

• else … load pte

Caltech CS184b Winter2001 -- DeHon 16

Early VM Machine

• Did something close to this...

9

Caltech CS184b Winter2001 -- DeHon 17

Modern Machines

• Keep hierarchical page table

• Optimize with lightweight hardware assist

• Translation Lookaside Buffer (TLB)
– Small associative memory

– maps physical address to virtual

– in series/parallel with every access

– faults to software on miss

– software uses page tables to service fault

Caltech CS184b Winter2001 -- DeHon 18

TLB

[Hennessy and Patterson 5.43]

10

Caltech CS184b Winter2001 -- DeHon 19

VM Page Replacement

• Like cache capacity problem

• Much more expensive to evict wrong thing

• Tend to use LRU replacement
– touched bit on pages (cheap in TLB)

– periodically (TLB miss? Timer interrupt) use to
update touched epoch

• Writeback (not write through)

• Dirty bit on pages, so don’t have to write
back unchanged page (also in TLB)

Caltech CS184b Winter2001 -- DeHon 20

VM (block) Page Size

• Larger than cache blocks
– reduce compulsory misses

– full mapping
• not increase conflict misses

• could increase capacity misses

– reduce size of page tables, TLB required to
maintain working set

11

Caltech CS184b Winter2001 -- DeHon 21

VM Page Size

• Modern idea: allow variety of page sizes
– “super” pages

– save space in TLBs where large pages viable
• instruction pages

– decrease compulsory misses where large
amount of data located together

– decrease fragmentation and capacity costs when
not have locality

Caltech CS184b Winter2001 -- DeHon 22

VM for Multitasking

• Once we’re translating addresses
– easy step to have more than one page table

– separate page table (address space) for each
process

– code/data can be live anywhere in real memory
and have consistent virtual memory address

– multiple live tasks may map data to to same
VM address and not conflict

• independent mappings

12

Caltech CS184b Winter2001 -- DeHon 23

Multitasking Page Tables
Real Memory

Task 1
Page Table

Disk

Task 2

Task 3

Caltech CS184b Winter2001 -- DeHon 24

VM Protection/Isolation

• If a process cannot map an address
– real memory

– memory stored on disk

• and a process cannot change it page-table
– and cannot bypass memory system to access

physical memory...

• the process has no way of getting access to
a memory location

13

Caltech CS184b Winter2001 -- DeHon 25

Elements of Protection

• Processor runs in (at least) two modes of
operation
– user

– privileged / kernel

• Bit in processor status indicates mode

• Certain operations only available in
privileged mode
– e.g. updating TLB, PTEs, accessing certain

devices

Caltech CS184b Winter2001 -- DeHon 26

System Services

• Provided by privileged software
– e.g. page fault handler, TLB miss handler,

memory allocation, io, program loading

• System calls/traps from user mode to
privileged mode
– …already seen trap handling requirements...

• Attempts to use privileged instructions
(operations) in user mode generate faults

14

Caltech CS184b Winter2001 -- DeHon 27

System Services

• Allows us to contain behavior of program
– limit what it can do

– isolate tasks from each other

• Provide more powerful operations in a
carefully controlled way
– including operations for bootstrapping, shared

resource usage

Caltech CS184b Winter2001 -- DeHon 28

Also allow controlled sharing

• When want to share between applications
– read only shared code

• e.g. executables, common libraries

– shared memory regions
• when programs want to communicate

• (do know about each other)

15

Caltech CS184b Winter2001 -- DeHon 29

Multitasking Page Tables
Real Memory

Task 1
Page Table

Disk

Task 2

Task 3
Shared page

Caltech CS184b Winter2001 -- DeHon 30

Page Permissions

• Also track permission to a page in PTE and
TLB
– read

– write
• support read-only pages

• pages read by some tasks, written by one

16

Caltech CS184b Winter2001 -- DeHon 31

TLB

[Hennessy and Patterson 5.43]

Caltech CS184b Winter2001 -- DeHon 32

Page Mapping Semantics

• Program wants value contained at A

• pte1=top_pte[A[32:24]]

• if pte1.present
– ploc=pte1[A[23:12]]

– if ploc.present and ploc.read
• Aphys=ploc<<12 + (A [11:0])

• Give program value at Aphys

– else … load page

• else … load pte

17

Caltech CS184b Winter2001 -- DeHon 33

VM and Caching?

• Should cache be virtually or physically
tagged?
– Tasks speaks virtual addresses

– virtual addresses only meaningful to a single
process

Caltech CS184b Winter2001 -- DeHon 34

Virtually Mapped Cache

• L1 cache access directly uses address
– don’t add latency translating before check hit

• Must flush cache between processes?

18

Caltech CS184b Winter2001 -- DeHon 35

Physically Mapped Cache

• Must translate address before can check
tags
– TLB translation can occur in parallel with

cache read
• (if direct mapped part is within page offset)

– contender for critical path?

• No need to flush between tasks

• Shared code/data not require flush/reload
between tasks

• Caches big enough, keep state in cache
between tasks

Caltech CS184b Winter2001 -- DeHon 36

Virtually Mapped

• Mitigate against flushing
– also tagging with process id

– processor (system?) must keep track of process
id requesting memory access

• Still not able to share data if mapped
differently
– may result in aliasing problems

• (same physical address, different virtual addresses in
different processes)

19

Caltech CS184b Winter2001 -- DeHon 37

Virtually Addressed Caches

[Hennessy and Patterson 5.26]

Caltech CS184b Winter2001 -- DeHon 38

Processor Memory Systems

[Hennessy and Patterson 5.47]

20

Caltech CS184b Winter2001 -- DeHon 39

Administrative

• No class next Thursday (3/1)

Caltech CS184b Winter2001 -- DeHon 40

Big Ideas

• Virtualization
– share scarce resource among many consumers

– provide “abstraction” that own resource
• not sharing

– make small resource look like bigger resource
• as long as backed by (cheaper) memory to manage

state and abstraction

• Common Case

• Add a level of Translation

