
1

Caltech CS184b Winter2001 -- DeHon 1

CS184b:
Computer Architecture

[Single Threaded Architecture:
abstractions, quantification, and

optimizations]

Day13: February 20, 2000

Cache and Memory System
Optimization

Caltech CS184b Winter2001 -- DeHon 2

Last Time

• Motivation for Caching
– fast memories small

– large memories slow

– need large memories

– speed of small w/ capacity/density of large

• Temporal Locality

• Miss types: capacity, compulsory, conflict

• Associativity, replacement

2

Caltech CS184b Winter2001 -- DeHon 3

Today

• DRAM (Main Memory) technology

• Spatial Locality

• Worked once, do it again…
– multi-level caching

• split, nonblocking, victim

• prefetch

• coding/compiling for

Caltech CS184b Winter2001 -- DeHon 4

Dynamic RAM

• Conventional, commercial, bulk DRAM

• optimized for density

– small cell size (1T, capacitor)

– as small capacitor as can get away with

– large arrays
– small signal swings, slow to detect

3

Caltech CS184b Winter2001 -- DeHon 5

Dynamic RAM

• Native organization is square
– memory columns = memory rows

– w=2a

• After about 512-1024 bit-line column
– hard to detect bit (too slow)

– recall charge-sharing read operation

– more rows in column→more capacitance

Caltech CS184b Winter2001 -- DeHon 6

Dynamic RAM

• Native banks about 1Mbit (1024×1024)
– raw internal bw 1024b per read

– multiplexed down further for off-chip xfer

• Once read, hold data in sense-amps

• Just multiplexing to access within row

• “column” access like static RAM
– static column mode, page mode, …

– “cache” RAM
• (present cache-like interface to DRAM)

– RAMBUS: pipeline out column data

4

Caltech CS184b Winter2001 -- DeHon 7

Dynamic RAM

• Large DRAMs
– multiple banks of roughly this size (1Mb)

– each may have column “cache”

– overlap long latency read access with access to
separate bank

• fetch column B1

• fetch column B2

• …

• read data from B1 fetched column

Caltech CS184b Winter2001 -- DeHon 8

Synchronous DRAM

• High-speed, synchronous I/O

• Standard DRAM-like row/column
addressing

• High speed pipeline/burst read of column
data

• Expose banking/paging

• row access ~ 32ns

• pipeline column reads at 8ns (shrinking)
– 125MHz

5

Caltech CS184b Winter2001 -- DeHon 9

Main Memory

• Past:
– DRAMs only provided a few output bits

– Wide memories by using multiple DRAM
components in parallel (e.g. SIMMs)

– Larger deeper memories with multiple DRAM
components on memory bus

• adds delay sharing bus, chip crossing to RAM

• time to select which component

– Memory access time slower than raw DRAM
time

Caltech CS184b Winter2001 -- DeHon 10

Main Memory

• Today:
– wider DRAM outputs

– fewer chips needed to provide desired capacity
• for typical/commodity systems

– banking within DRAM

• Tomorrow?
– IC separation disappear?

6

Caltech CS184b Winter2001 -- DeHon 11

Re-Engineering DRAM

• Can engineer DRAM for speed
– trade density for speed

• NEC example ISSCC’99
– 8Kb “bank”

– 250λ2 per bit (compare 100λ2 per bit conv.)

– 6.8 ns random access (9.1 ns cycle)

– 64Mb array

Caltech CS184b Winter2001 -- DeHon 12

NEC DRAM “bank” tradeoffs

[ISSCC’99 p416-417]

7

Caltech CS184b Winter2001 -- DeHon 13

Spatial Locality

Caltech CS184b Winter2001 -- DeHon 14

Spatial Locality

• Higher likelihood of referencing nearby
objects
– instructions

• sequential instructions

• in same procedure (procedure close together)

• in same loop (loop body contiguous)

– data
• other items in same aggregate

• other fields of struct or object

• other elements in array

• same stack frame

8

Caltech CS184b Winter2001 -- DeHon 15

Exploiting Spatial Locality

• Fetch nearby objects

• Exploit
– high-bandwidth sequential access (DRAM)

– wide data access (memory system)

• To bring in data around memory reference

Caltech CS184b Winter2001 -- DeHon 16

Blocking

• Manifestation: Blocking / Cache lines

• Cache line bigger than single word

• Fill cache line on miss

• Size b-word cache line
– sequential access, miss only 1 in b references

9

Caltech CS184b Winter2001 -- DeHon 17

Blocking

• Benefit
– less miss on sequential/local access

– amortize cache tag overhead
• (share tag across b words)

• Costs
– more fetch bandwidth consumed (if not use)

– more conflicts
• (maybe between non-active words in cache line)

– maybe added latency to target data in cache line

Caltech CS184b Winter2001 -- DeHon 18

Block Size

[Hennessy and Patterson 5.11]

10

Caltech CS184b Winter2001 -- DeHon 19

Optimizing Blocking

• Separate valid/dirty bit per word
– don’t have to load all at once

– writeback only changed

• Critical word first
– start fetch at missed/stalling word

– then fill in rest of words in block

– use valid bits deal with those not present

Caltech CS184b Winter2001 -- DeHon 20

Multi-level Cache

11

Caltech CS184b Winter2001 -- DeHon 21

Cache Numbers (from last time)

• No Cache
– CPI=Base+0.3*50=Base+15

• Cache at CPU Cycle (10% miss)
– CPI=Base+0.3*0.1*50=Base +1.5

• Cache at CPU Cycle (1% miss)
– CPI=Base+0.3*0.01*50=Base +0.15

50ns main memory
1 GHz CPU

Caltech CS184b Winter2001 -- DeHon 22

Implication (Cache Numbers)

• To get 1% miss rate?
– 64KB-256KB cache

– not likely to support GHz CPU rate

• More modest
– 4KB-8KB

– 7% miss rate

• 50x performance gap cannot really be
covered by single level of cache

12

Caltech CS184b Winter2001 -- DeHon 23

…do it again...

• If something works once,
– try to do it again

• Put second (another) cache between CPU
cache and main memory
– larger than fast cache

– hold more … less misses

– smaller than main memory

– faster than main memory

Caltech CS184b Winter2001 -- DeHon 24

Multi-level Caching

• First cache: Level 1 (L1)

• Second cache: Level 2 (L2)

• CPI = Base CPI
+Refs/Instr (L1 Miss Rate)(L2 Latency) +

+Ref/Instr (L2 Miss Rate)(Memory Latency)

13

Caltech CS184b Winter2001 -- DeHon 25

Multi-Level Numbers

• L1, 1ns, 4KB, 10% miss

• L2, 5ns, 128KB, 1% miss

• Main, 50ns

• L1 only CPI=Base+0.3*0.1*50=Base +1.5

• L2 only CPI=Base+0.3*(0.99*4+0.01*50)
=Base+1.7

• L1/L2=Base+(0.3*0.1*5 + 0.01*50)
=Base+0.65

Caltech CS184b Winter2001 -- DeHon 26

Numbers

• Maybe could use L3?
– Hypothesize: L3, 10ns, 1MB, 0.2%

• L1/L2/L3=Base+(0.3*0.1*5 +
0.01*10+0.002*50) =Base+0.15+0.1+0.1
=Base+0.35

14

Caltech CS184b Winter2001 -- DeHon 27

Rate Note

• Previous slides:
– “L2 miss rate” = miss of L2

• all access; not just ones which miss L1

– If talk about miss rate wrt only L2 accesses
• higher since filter out locality from L1

• H&P: global miss rate
• Local miss rate: misses from accesses seen

in L2

• Global miss rate
– L1 miss rate × L2 local miss rate

Caltech CS184b Winter2001 -- DeHon 28

Segregation

15

Caltech CS184b Winter2001 -- DeHon 29

I-Cache/D-Cache

• Processor needs one (or several) instruction
words per cycle

• In addition to the data accesses
– Instr/Ref*Instr Issue

• Increase bandwidth with separate memory
blocks (caches)

Caltech CS184b Winter2001 -- DeHon 30

I-Cache/D-Cache

• Also different behavior
– more locality in I-cache

– afford less associativity in I-cache?

– Make I-cache wide for multi-instruction fetch

– no writes to I-cache

• Moderately easy to have multiple memories
– know which data where

16

Caltech CS184b Winter2001 -- DeHon 31

By Levels?

• L1
– need bandwidth

– typically split (contemporary)

• L2
– hopefully bandwidth reduced by L1

– typically unified

Caltech CS184b Winter2001 -- DeHon 32

…Other Optimizations

17

Caltech CS184b Winter2001 -- DeHon 33

How disruptive is a Miss?

• With
– multiple issue

– a reference every 3-4 instructions

• memory references 1+ times per cycle

• Miss means multiple (4,8,50?) cycles to
service

• Each miss could holds up 10’s to 100’s of
instructions...

Caltech CS184b Winter2001 -- DeHon 34

Minimizing Miss Disruption

• Opportunity:
– out-of-order execution

• maybe we can go on without it

• scoreboarding/tomasulo do dataflow on arrival

• go ahead and issue other memory operations

– next ref might be in L1 cache
• …while miss referencing L2, L3, etc.

– next ref might be in a different bank
• can access (start access) while waiting for bank

latency

18

Caltech CS184b Winter2001 -- DeHon 35

Non-Blocking Memory System

• Allow multiple, outstanding memory
references

• Need split-phase memory operations
– separate request data

– from data reply (read -- complete for write)

• Reads:
– easy, use scoreboarding, etc.

• Writes:
– need write buffer, bypass...

Caltech CS184b Winter2001 -- DeHon 36

Non-Blocking

[Hennessy and Patterson 5.11]

19

Caltech CS184b Winter2001 -- DeHon 37

Victim Cache

• Problem with Direct-mapped (low-
associativity):
– commonly referenced data items may map to

same cache location

– force thrashing

• Mitigate:
– add a small associative cache (buffer) to hold

recent evictions

Caltech CS184b Winter2001 -- DeHon 38

Victim Cache

• Victim Cache after L1 cache
– not add to cycle time like assoc. check

– like L1.5 cache :-)

– small number of entries

• For small (4KB?) direct mapped caches
– gives hit-rate performance of set-associative

– …but faster (on hit case)

20

Caltech CS184b Winter2001 -- DeHon 39

Prefetch

• Reduce misses, by trying to load values
before they’re needed

• Hardware/dynamic:
– block cache lines an example

– auto prefetch next cache block
• to stream buffer so not pollute cache

• should never miss on sequential control flow

Caltech CS184b Winter2001 -- DeHon 40

Prefetch

• Software/Compiler assisted
– exposes to model

– may generate more memory traffic

– requires issue slots

– compiler can hoist/schedule access in advance
of use

– place in dominator position
• one fetch, many uses

– deal with cases not predictable with simple
hardware heuristics

– saw examples in VLIW/EPIC

21

Caltech CS184b Winter2001 -- DeHon 41

Prefetch

• To cache

• Non-binding

• Non-faulting

• Only affects performance
– not behavior/semantics

Caltech CS184b Winter2001 -- DeHon 42

Coding and Compiling...

22

Caltech CS184b Winter2001 -- DeHon 43

Exploit Freedom

• Much freedom exists in how we code,
transform, map programs

• Can exploit that freedom
– enhance locality

• temporal

• spatial

– reduce conflicts
• direct mapped / low associativity

Caltech CS184b Winter2001 -- DeHon 44

Simple Thing First...

• Keep data structures small/minimal
– at least, heavily accessed data structures

23

Caltech CS184b Winter2001 -- DeHon 45

Freedom

• Data layout
– place data referenced together close together

• same page

• same cache line

– common case code together
• bin to cache line by usage

• even if structure large, commonly accessed data in
minimum number of cache lines

Caltech CS184b Winter2001 -- DeHon 46

Freedom

• Task sequentialization
– process local regions of data close together in

time
• e.g. blocking, strided data access

24

Caltech CS184b Winter2001 -- DeHon 47

Freedom

• Code layout
– pack together common case (main trace)

• close together

• packed appropriately into cache lines

• on same page

• off trace code may go further away

– make sure addresses in common traces not alias
to same cache slot

• compiler use feedback from program run

Caltech CS184b Winter2001 -- DeHon 48

Implementation Specific?

• These recommendations/opt. specific to a
particular microarchitecture?
– Locality concept fairly universal

• for current technology…

– Optimizing locality probably good

– Many effects depend on constants/boundaries
• cache line size

• blocking and size of cache at each level

• conflicts and associativity

25

Caltech CS184b Winter2001 -- DeHon 49

Big Ideas

• Structure
– spatial locality

• Engineering
– worked once, try it again…until won’t work

• Exploit freedom which exists in application
– to favor what can do efficiently/cheaply

