
1

Caltech CS184b Winter2001 -- DeHon 1

CS184b:
Computer Architecture

[Single Threaded Architecture:
abstractions, quantification, and

optimizations]

Day12: February 15, 2000

Cache Introduction

Caltech CS184b Winter2001 -- DeHon 2

Today

• Issue

• Structure

• Idea

• Cache Basics

2

Caltech CS184b Winter2001 -- DeHon 3

Memory and Processors

• Memory used to compactly store
– state of computation

– description of computation (instructions)

• Memory access latency impacts
performance
– timing on load, store

– timing on instruction fetch

Caltech CS184b Winter2001 -- DeHon 4

Issues
• Need big memories:

– hold large programs (many instructions)

– hold large amounts of state

• Big memories are slow

• Memory takes up areas
– want dense memories

– densest memories not fast
• fast memories not dense

• Memory capacity needed not fit on die
– inter-die communication is slow

3

Caltech CS184b Winter2001 -- DeHon 5

Problem

• Desire to contain problem
– implies large memory

• Large memory
– implies slow memory access

• Programs need frequent memory access
– e.g. 20% load operations

– fetch required for every instruction

• Memory is the performance bottleneck?
– Programs run slow?

Caltech CS184b Winter2001 -- DeHon 6

Opportunity

• Architecture mantra:
– exploit structure in typical problems

• What structure exists?

4

Caltech CS184b Winter2001 -- DeHon 7

Memory Locality
• What percentage of accesses to unique

addresses
– addresses distinct from the last N unique

addresses

[Huang+Shen, Intrinsic BW, ASPLOS 7]

Caltech CS184b Winter2001 -- DeHon 8

Hierarchy/Structure Summary
• “Memory Hierarchy” arises from

area/bandwidth tradeoffs
– Smaller/cheaper to store words/blocks

• (saves routing and control)

– Smaller/cheaper to handle long retiming in
larger arrays (reduce interconnect)

– High bandwidth out of registers/shallow
memories

[from CS184a]

5

Caltech CS184b Winter2001 -- DeHon 9

Opportunity

• Small memories are fast

• Access to memory is not random
– temporal locality

– short and long retiming distances

• Put commonly/frequently used data
(instructions) in small memory

Caltech CS184b Winter2001 -- DeHon 10

Memory System Idea

• Don’t build single, flat memory

• Build a hierarchy of speeds/sizes/densities
– commonly accessed data in fast/small memory

– infrequently used data in large/dense/cheap
memory

• Goal
– achieve speed of small memory

– with density of large memory

6

Caltech CS184b Winter2001 -- DeHon 11

Hierarchy Management

• Two approaches:
– explicit data movement

• register file

• overlays

– transparent/automatic movement
• invisible to model

Caltech CS184b Winter2001 -- DeHon 12

Opportunity: Model

• Model is simple:
– read data and operate upon

– timing not visible

• Can vary timing
– common case fast (in small memory)

– all cases correct
• can answered from larger/slower memory

7

Caltech CS184b Winter2001 -- DeHon 13

Cache Basics

• Small memory (cache) holds commonly
used data

• Read goes to cache first

• If cache holds data
– return value

• Else
– get value from bulk (slow) memory

• Stall execution to hide latency
– full pipeline, scoreboarding

Caltech CS184b Winter2001 -- DeHon 14

Cache Questions

• How manage contents?
– decide what goes (is kept) in cache?

• How know what we have in cache?

• How make sure consistent ?
– between cache and bulk memory

8

Caltech CS184b Winter2001 -- DeHon 15

Cache contents

• Ideal: cache should hold the N items that
maximize the fraction of memory references
which are satisfied in the cache

• Problem:
– don’t know future

– don’t know what values will be needed in the
future

• partially limitation of model

• partially data dependent

• halting problem
– (can’t say if will execute piece of code)

Caltech CS184b Winter2001 -- DeHon 16

Cache Contents

• Look for heuristics which keep most likely
set of data in cache

• Structure: temporal locality
– high probability that recent data will be

accessed again

• Heuristic goal:
– keep the last N references in cache

9

Caltech CS184b Winter2001 -- DeHon 17

Temporal Locality Heuristic

• Move data into cache on access (load, store)

• Remove “old” data from cache to make
space

Caltech CS184b Winter2001 -- DeHon 18

“Ideal” Locality Cache

• Stores N most recent things
– store any N things

– know which N things accessed

– know when last used

data addr Ref cycle

10

Caltech CS184b Winter2001 -- DeHon 19

“Ideal” Locality Cache

data addr Ref cycle

=
ld

data addr Ref cycle

=
ld

data addr Ref cycle

=
ld

• Match address
• If matched,

•update cycle
• Else

•drop oldest
•read from memory
•store in newly free slot

Caltech CS184b Winter2001 -- DeHon 20

Problems with “Ideal” Locality?

• Need O(N) comparisons

• Must find oldest
– (also O(N)?)

• Expensive

data addrRef cycle

=
ld

data addrRef cycle

=
ld

data addrRef cycle

=
ld

11

Caltech CS184b Winter2001 -- DeHon 21

Relaxing “Ideal”

• Keeping usage (and comparing) expensive

• Relax:
– Keep only a few bits on age

– Don’t bother
• pick victim randomly

• things have expected lifetime in cache

• old things more likely than new things

• if evict wrong thing, will replace

• very simple/cheap to implement

Caltech CS184b Winter2001 -- DeHon 22

Fully Associative Memory

• Store both
– address

– data

• Can store any N
addresses

• approaches ideal of
“best” N things

data addr

=

data addr

=

data addr

=

12

Caltech CS184b Winter2001 -- DeHon 23

Relaxing “Ideal”

• Comparison for every address is expensive

• Reduce comparisons
– deterministically map address to a small portion

of memory

– Only compare addresses against that portion

Caltech CS184b Winter2001 -- DeHon 24

Direct Mapped

• Extreme is a “direct mapped” cache

• Memory slot is f(addr)
– usually a few low bits of address

• Go directly to address
– check if data want is there

data addr

=

data addr

data addr

data addr

Addr
high

Addr
low

hit

13

Caltech CS184b Winter2001 -- DeHon 25

Direct Mapped Cache

• Benefit
– simple

– fast

• Cost
– multiple addresses will need same slot

– conflicts mean don’t really have most recent N
things

– can have conflict between commonly used
items

Caltech CS184b Winter2001 -- DeHon 26

Set-Associative Cache

• Between extremes set-associative

• Think of M direct mapped caches

• One comparison for each cache

• Lookup in all M caches

• Compare and see if any have target data

• Can have M things which map to same
address

14

Caltech CS184b Winter2001 -- DeHon 27

Two-Way Set Associative

data addr

=

data addr

data addr

data addr

data addr

=

data addr

data addr

data addr

Low address bits

High
address
bits

Caltech CS184b Winter2001 -- DeHon 28

Two-way Set Associative

[Hennessy and Patterson 5.8]

15

Caltech CS184b Winter2001 -- DeHon 29

Set Associative

• More expensive that direct mapped

• Can decide expense

• Slower than direct mapped
– have to mux in correct answer

• Can better approximate holding N most
recently/frequently used things

Caltech CS184b Winter2001 -- DeHon 30

Classify Misses

• Compulsory
– first refernce

– (any cache would have)

• Capacity
– misses due to size

– (fully associative would have)

• Conflict
– miss because of limit places to put

16

Caltech CS184b Winter2001 -- DeHon 31

Set Associativity

[Hennessy and Patterson 5.10]

Caltech CS184b Winter2001 -- DeHon 32

Absolute Miss Rates

[Hennessy and Patterson 5.10]

17

Caltech CS184b Winter2001 -- DeHon 33

Policy on Writes

• Keep memory consistent at all times?
– Or cache+memory holds values?

• Write through:
– all writes go to memory and cache

• Write back:
– writes go to cache

– update memory only on eviction

Caltech CS184b Winter2001 -- DeHon 34

Write Policy

• Write through
– easy to implement

– eviction trivial
• (just overwrite)

– every write is slow (main memory time)

• Write back

– fast (writes to cache)

– eviction slow/complicate

18

Caltech CS184b Winter2001 -- DeHon 35

Cache Equation...

• Assume hits satisfied in 1 cycle

• CPI = Base CPI + Refs/Instr (Miss
Rate)(Miss Latency)

Caltech CS184b Winter2001 -- DeHon 36

Cache Numbers

• CPI = Base CPI + Ref/Instr (Miss
Rate)(Miss Latency)

• From ch2/experience
– load-stores make up ~30% of operations

• Miss rates
– …1-10%

• Main memory latencies
– 50ns

• Cycle times
– 1ns … shrinking

19

Caltech CS184b Winter2001 -- DeHon 37

Cache Numbers

• No Cache
– CPI=Base+0.3*50=Base+15

• Cache at CPU Cycle (10% miss)
– CPI=Base+0.3*0.1*50=Base +1.5

• Cache at CPU Cycle (1% miss)
– CPI=Base+0.3*0.01*50=Base +0.15

Caltech CS184b Winter2001 -- DeHon 38

Big Ideas

• Structure
– temporal locality

• Model
– optimization preserving model

– simple model

– sophisticated implementation

– details hidden

20

Caltech CS184b Winter2001 -- DeHon 39

Big Ideas

• Balance competing factors
– speed of cache vs. miss rate

• Getting best of both worlds
– multi level

– speed of small

– capacity/density of large

