
1

Caltech CS184b Winter2001 -- DeHon 1

CS184b:
Computer Architecture

[Single Threaded Architecture:
abstractions, quantification, and

optimizations]

Day11:  February 8, 2000

EPIC

Caltech CS184b Winter2001 -- DeHon 2

Today

• EPIC: next generation of VLIW

• adding recent features/lessons to VLIW

• other modern features…

• …not much quantitative data :-(



2

Caltech CS184b Winter2001 -- DeHon 3

VLIW

• Exploit ILP

• w/out all the hardware complexity and cost

• Relegate even more interesting stuff to the
compiler (REMISC?)

• …but no binary compatibility path

Caltech CS184b Winter2001 -- DeHon 4

Scaling Idea

• Problem:
– VLIW: amount of parallelism fixed by VLIW

schedule

– SuperScalar: have to check many dynamic
dependencies

• Idealized Solution:
– expose all the parallelism you can

– run it as sequential/parallel as necessary



3

Caltech CS184b Winter2001 -- DeHon 5

Basic Idea

• What if we scheduled an infinitely wide
VLIW?

• For an N-issue machine
– for I = 1 to (width of this instruction/N)

• grab next N instructions and issue

Caltech CS184b Winter2001 -- DeHon 6

Problems?

• Instructions arbitrarily long?

• Need infinite registers to support infinite
parallelism?

• Split Register file still work?

• Sequentializing semantically parallel
operations introduce hazards?



4

Caltech CS184b Winter2001 -- DeHon 7

Instruction Length

• Field in standard way
– pinsts (from cs184a)

– like RISC instruction components

• Allow variable fields (syllables) per parallel
component

• Encode
– stop bit (break between instructions)

– (could have been length…)

Caltech CS184b Winter2001 -- DeHon 8

Registers

• Compromise on fixed number of registers
– …will limit parallelism, and hence scalability…

• Also keep(adopt) monolithic/global register
file
– syllables can’t control which “cluster” in which

they’ll run

– consider series of 7 syllable ops
• where syllables end up on 3-issue, 4-issue machine?



5

Caltech CS184b Winter2001 -- DeHon 9

Sequentializing Parallel

• Consider wide instruction:
– MUL R1,R2,R3   ADD R2,R1,R5

• Now sequentialize:

– MUL R1,R2,R3

– ADD R2,R1,R5

• Different semantics

Caltech CS184b Winter2001 -- DeHon 10

Semantics of a
“Long Instruction”

• Correct if executed in parallel

• Preserved with sequentialization

• So:
– read values are from beginning of issue

– no RAW hazards:
• can’t write to a register used as a source

– no WAW hazards:
• can’t write to a register multiple times



6

Caltech CS184b Winter2001 -- DeHon 11

Non-VLIW-ness

Caltech CS184b Winter2001 -- DeHon 12

Register File

• Monolithic register file

• Ports grows with number of physical
syllables supported



7

Caltech CS184b Winter2001 -- DeHon 13

Instruction Issue

• VLIW
– no interconnect/shuffle/etc. between fetch and

clusters

– straight (like fixed fields)

• EPIC
– variable length and varying syllable support

– may have to perform arbitrary shift from
memory fetch to syllable issue?

• O(N2) wire interconnect?

• …but don’t have to compare values to control...

Believe can
see away to 
keep it local

Caltech CS184b Winter2001 -- DeHon 14

Bypass

• VLIW
– schedule around delay cycles in pipe

• EPIC not know which instructions in pipe at
compile time
– do have to watch for hazards between

instruction groups

– ? Similar pipelining issues to
RISC/superscalar?

– Bypass only at issue group boundary
• maybe can afford to be more spartan?



8

Caltech CS184b Winter2001 -- DeHon 15

Concrete Details

(IA-64)

Caltech CS184b Winter2001 -- DeHon 16

Terminology

• Syllables (their pinsts)

• bundles: group of 3 syllables for IA-64

• Instruction group: “variable length” issue
set
– i.e. set of bundles (syllables) which may

execute in parallel



9

Caltech CS184b Winter2001 -- DeHon 17

IA-64 Encoding

Source: Intel/HP IA-64 Application ISA Guide 1.0

Caltech CS184b Winter2001 -- DeHon 18

IA-64 Templates

Source: Intel/HP IA-64 Application ISA Guide 1.0



10

Caltech CS184b Winter2001 -- DeHon 19

IA-64 Registers

Source: Intel/HP IA-64 Application ISA Guide 1.0

Caltech CS184b Winter2001 -- DeHon 20

Other Additions



11

Caltech CS184b Winter2001 -- DeHon 21

Other Stuff

• Speculation/Exceptions

• Predication

• Branching

• Memory

• Register Renaming

Caltech CS184b Winter2001 -- DeHon 22

Speculation

• Can mark instructions as speculative

• Bogus results turn into designated NaT

– particularly loads
– compare posion bits

• NaT arithmetic produces NaTs

• Check for NaTs if/when care about result



12

Caltech CS184b Winter2001 -- DeHon 23

Predication

• Already seen conditional moves

• Almost every operation here is conditional
– (similar to ARM?)

• Full set of predicate registers
– few instructions for calculating composite

predicates

• Again, exploit parallelism and avoid loosing
trace on small, unpredictable branches
– can be better to do both than branch wrong

Caltech CS184b Winter2001 -- DeHon 24

Predication: Quantification



13

Caltech CS184b Winter2001 -- DeHon 25

Branching

• Unpack branch
– branch prepare (calculate target)

• added branch registers for

– compare (will I branch?)

– branch execute (transfer control now)

• sequential semantics w/in instruction group

• indicate static or dynamic branch predict

• loop instruction (fixed trip loops)

• multiway branch (with predicates)

Caltech CS184b Winter2001 -- DeHon 26

Memory

• Prefetch
– typically non-binding?

• control caching
– can specify not to allocate in cache

• if know use once
• suspect no temporal locality

– can specify appropriate cache level

• speculation



14

Caltech CS184b Winter2001 -- DeHon 27

Memory Speculation

• Ordering limits due to aliasing
– don’t know if can reorder a[i], a[j]

• A[j]=x+y;

• C=a[i]*Z;

– might get WAR hazards

• Memory speculation:
– reorder read

– check in order and correct if incorrect

Caltech CS184b Winter2001 -- DeHon 28

Memory Speculation

• Store(st_addr,data)

• load(ld_addr,target)

• use(target)

• Aload(ld_addr,target)

• store(st_adder,data)

• acheck(target,recovery
_addr)

• use(target)



15

Caltech CS184b Winter2001 -- DeHon 29

Memory Speculation

If advanced load fails, checking load performs actual load.

Caltech CS184b Winter2001 -- DeHon 30

Memory Speculation

If advanced load succeeds, values are good and can continue;
   otherwise have to execute patch up code.



16

Caltech CS184b Winter2001 -- DeHon 31

Advanced Load Support

• Advanced Load Table

• Speculative loads allocate space in ALAT
– tagged by target register

• ALAT checked against stores
– invalidated if see overwrite

• At check or load
– if find valid entry, advanced load succeeded

– if not find entry, failed
• reload …or…

• branch to patchup code

Caltech CS184b Winter2001 -- DeHon 32

Register “renaming”

• Use top 96 registers like a stack?

• Still register addressable

• But increment base on
– loops, procedure entry

• Treated like stack with “automatic”
background task to save/restore values



17

Caltech CS184b Winter2001 -- DeHon 33

Register “renaming”

• Application benefits:
– software pipelining without unrolling

– values from previous iterations of loop get
different names (rename all registers allocated
in loop by incrementing base)

• allows reference to by different names

– pass data through registers
• without compiling caller/callee together

• variable number of registers

Caltech CS184b Winter2001 -- DeHon 34

Register “Renaming”

• …old bad idea?
– Stack machines?

• Does allow register named access

– Register Windows (RISC-II,SPARC)
• SPARC register windows were fixed size

• had to save and restore in that sized chunk

• only window-set visible



18

Caltech CS184b Winter2001 -- DeHon 35

Register “renaming” Costs

• Slow down register access
– have to do arithmetic on register numbers

• Require hardware register save/restore
engine
– orthogonal task to execution

– complicated?

• Complicates architecture

Caltech CS184b Winter2001 -- DeHon 36

Admin

• Tuesday:
– No CLASS

• Thursday:
– start on caching

– (so start reading chapter 5)



19

Caltech CS184b Winter2001 -- DeHon 37

Big Ideas

• Compile for maximum parallelism

• Sequentialize as necessary
–  (moderately) cheap

Caltech CS184b Winter2001 -- DeHon 38

Big Ideas

• Latency reduction hard
– path length is our parallelism limiter

– often good to trade more work for shorter
critical path

• area-time tradeoff

– speculation, predication reduce path length
• perhaps at cost of more total operations



20

Caltech CS184b Winter2001 -- DeHon 39

Big Ideas
 [MSB-1]

• Local control (predication)
– costs issue

– increases predictability, parallelism

• Common Case/Speculation
– avoid worst-case pessimism on memory

operations

– common case faster

– correct in all cases


