CS184b:

Computer Architecture
[Single Threaded Architecture:
abstractions, quantification, and

optimizations]

Dayl1l: February 8, 2000
EPIC

Caltech CS184b Winter2001 -- DeHon 1

Today

EPIC: next generation of VLIW
adding recent features/lessonsto VLIW
other modern features...

...Nnot much quantitative data :-(

Caltech CS184b Winter2001 -- DeHon 2

VLIW

Exploit ILP
w/out all the hardware complexity and cost

Relegate even more interesting stuff to the
compiler (REMISC?)

...but no binary compatibility path

Caltech CS184b Winter2001 -- DeHon

Scaling Idea

e Problem:

— VLIW: amount of parallelism fixed by VLIW
schedule

— SuperScalar: have to check many dynamic
dependencies

* |dealized Solution:
— expose all the parallelism you can
—run it as sequential/parallel as necessary

Caltech CS184b Winter2001 -- DeHon

Basic Idea

* What if we scheduled an infinitely wide
VLIW?
» For an N-issue machine

— for | = 1to (width of thisinstruction/N)
* grab next N instructions and issue

Caltech CS184b Winter2001 -- DeHon

Problems?

* Instructions arbitrarily long?

» Need infinite registers to support infinite
parallelism?

o Split Register file still work?

» Sequentializing semantically paralle
operations introduce hazards?

Caltech CS184b Winter2001 -- DeHon

Instruction Length

» Field in standard way
— pinsts (from cs184a)
— like RISC instruction components
» Allow variablefields (syllables) per parallel
component
* Encode
— stop bit (break between instructions)
— (could have been length...)

Caltech CS184b Winter2001 -- DeHon

Registers

» Compromise on fixed number of registers
— ...will limit parallelism, and hence scalability...

 Also keep(adopt) monolithic/global register
file
— syllables can’t control which “cluster” in which
they’ Il run

— consider series of 7 syllable ops
» where syllables end up on 3-issue, 4-issue machine?

Caltech CS184b Winter2001 -- DeHon

Sequentializing Parallé€l

» Consider wide instruction:

—-MUL R1,R2,R3 ADD R2,R1,R5
* Now sequentialize:

—-MUL R1,R2,R3

—ADD R2,R1,R5

o Different semantics

Caltech CS184b Winter2001 -- DeHon 9

Semantics of a
“Long Instruction”

» Correct if executed in parallel
» Preserved with sequentialization
* 30:
— read values are from beginning of issue

—no RAW hazards:
 can't write to aregister used as a source

—no WAW hazards:
 can’t write to aregister multiple times

Caltech CS184b Winter2001 -- DeHon 10

Non-VLIW-ness

Register File
» Monoalithic register file
* Ports grows with number of physical
syllables supported

| nstruction Issue

* VLIW

— no interconnect/shuffle/etc. between fetch and
clusters

— straight (like fixed fields)
* EPIC

— variable length and varying syllable support
aveto perform arbitrary shift fr

memory Believe can
e see away to
* O(N?) wireint . keep it local

t have to compare valu ntrol...

Caltech CS184b Winter2001 -- DeHon 13

Bypass

* VLIW
— schedule around delay cyclesin pipe
» EPIC not know which instructions in pipe at
compiletime
— do have to watch for hazards between
Instruction groups
— ? Similar pipelining issues to
RISC/superscalar?
— Bypass only at issue group boundary

» maybe can afford to be more spartan?
Caltech CS184b Winter2001 -- DeHon 14

Concrete Details

(I1A-64)

Caltech CS184b Winter2001 -- DeHon

15

Terminology

» Syllables (their pinsts)
 bundles: group of 3 syllablesfor |1A-64

* Instruction group: “variable length” issue
set

—i.e. set of bundles (syllables) which may
execute in parallel

Caltech CS184b Winter2001 -- DeHon

16

|A-64 Encoding

127 87 %6

46 45

5 4

0

instruction slot 2 ‘

instruction slot 1

| instruction slot O

4L

41

Figure 3-16. Bundle Format

41

Instruction e Execution Unit
Type Description Type
A Integer ALU T-unit or M-unit
1 Non-ALU integer | I-unit
M Memory M-unit
F Floating-point F-unit
B Branch B-unit
L+X Extended T-unit

|template|
35

Source: Intel/HP 1A-64 Application ISA Guide 1.0

Caltech CS184b Winter2001 -- DeHon

17

|A-64 Templates

Table 3-9. Template Field Encoding and Instruction Slot Mapping

Template | Slot0 Slot 1 \ Slot 2
00 Mot Tunit Tunit
ol Meunit Lunit Tt ||
o2 Meunit Tunit || Lunit
03 M-unit Tunit ||~ Tanit ||
o1 Mounit | Lunit | X-unit
o3 Mounit | Lunit X-unit
06
o7
o8 Munit Munit Lunit
09 Mounit Mounit Tunit ||
OA Meunit || Meunit Lunit
OB Meunit || Meunit Tunit ||
oC Muoit Funit Lunit
oD Meunit Funit Tunit ||
OF Mounit Mounit Founit
OF Meunit Meunit Feunit ||
0 Moot Lunit | Bounit
i Munit Tuoit | Beunit ||
2 Mounit | Bumit B-unit
3 Mounit | Baunit B-unit
2]

15

16 Baunit Bunit B-unit
7 Buoit Bunit Bunit ||
8 Mounit M-unit | B-unit
m Mounit Mounit | B-unit
A

B

ic Munit Funit B-unit
D Mounit Funit B-unit
1E

¥

Caltech CS184b Winter2001 -- DeHon

[nstruction e Execution Unit
Type Description Type
A Integer ALU T-unit or M-unit
1 Non-ALU integer | T-unit
M Memory M-unit
F Floating-point F-unit
B Branch B-unit
L+X Extended T-unit

urce: Intel/HP 1A-64 Application ISA Guide 1.0

18

|A-64 Registers

&
&
£hie

&3,

General registers

APPLICATION REGISTER SET

Application registers

Floating-point registers Predicates Branch registers & o
6 goat 51 [63 [ary KRO
0 1y 500 bro
fi +1.0 bry ary KR7
fr, bi,
0 arg[RSC
Pris| bry g BSP
fr3, Prig Instruction Pointer ar g [BSPSTORE
g & oscion Pomge 218 BT
P
Current Frame Marker ant FCR
prszlj urrent Frame Marker ary EFLAG
ars CsD
) at) SSD
Use; Mfk ay__CELG
aryg FSR
fii; . arg FIR
0 Performance Monitor -, DR
Processor Identifiers Data registers
63 0
cpuidg|] pmdf 1 apl CCV
cpuid, | | pmd | a3g[UNAT |
ar| FPSR
<puid, |] pmdy] ay,[Trc
argy PFS
Ags LC
Agg, EC
gy

Caltech CS184b Winter2001 -- geH

Figure 3-1. Application Register Model

rce: Intel/HP 1A-64 A

pplication ISA Guide 1.0

on 19
Other Additions
Caltech CS184b Winter2001 -- DeHon 20

10

Other Stuff

 Speculation/Exceptions
» Predication

* Branching

* Memory

* Register Renaming

Caltech CS184b Winter2001 -- DeHon

21

Speculation

» Can mark instructions as speculative
» Bogus resultsturn into designated NaT
— particularly loads
— compare posion bits
o NaT arithmetic produces NaTs
» Check for NaTs if/when care about result

Caltech CS184b Winter2001 -- DeHon

22

11

Predication

Already seen conditional moves

— (similar to ARM?)
Full set of predicate registers

— few instructions for calculating composite
predicates

trace on small, unpredictable branches
— can be better to do both than branch wrong

Caltech CS184b Winter2001 -- DeHon

Almost every operation here is conditional

Again, exploit parallelism and avoid loosing

23

Predication: Quantification

Predication Increases Performance

Branches
Removed
Mispradicts
Removed

g
3
]
<

On average, over half of all branches are removed

H Source; ISCA ‘95 §.Mahlke, et.al. HEWLETT
In"'eL | () it

Caltech CS184b Winter2001 -- DeHon

24

12

Branching

Unpack branch

— branch prepare (calcul ate target)
* added branch registers for

— compare (will I branch?)
— branch execute (transfer control now)

sequential semantics w/in instruction group
indicate static or dynamic branch predict
loop instruction (fixed trip loops)

» multiway branch (with predicates)

Caltech CS184b Winter2001 -- DeHon

25

Memory

» Prefetch
— typically non-binding?
* control caching

— can specify not to alocate in cache

* if know use once
« suspect no temporal locality

— can specify appropriate cache level
 speculation

Caltech CS184b Winter2001 -- DeHon

26

13

Memory Speculation

» Ordering limitsdue to aliasing
—don’'t know if can reorder gi], &j]
* Ali]=x+y;
» C=4i]*Z;
— might get WAR hazards
* Memory speculation:
— reorder read
— check in order and correct if incorrect

Caltech CS184b Winter2001 -- DeHon

27

Memory Speculation

» Store(st_addr,data) » Aload(ld_addr,target)
* |oad(ld_addr,target)
* use(target) store(st_adder,data)

 acheck(target,recovery
_addr)

 use(target)

Caltech CS184b Winter2001 -- DeHon

28

14

Memory Speculation

1dE e = [rd]pg
add 5 = T FY;
scE |ld] =&

Bedore Data Speculation After Datn Speculation
AF othar instructicons 14E.a r€ = [rH]jy Ff advanced load
=ER lrd] = rlZ £ other dinstrction:

stE Ir4] = £1Z2

1dB.¢.elr 16 = [FB] #F check load
add IS = 16 T}

2tk [x13] = 5

Figure 4-2. Data Speculation Recovery Using Id.c

If advanced load fails, checking load performs actual load.

Caltech CS184b Winter2001 -- DeHon

29

Memory Speculation

Before Data Speculation After Data Specalation
! pther instroctionz 1dB.a 16 = [x8];;
sch [rd] = ¥1Z £ other instruccions
Ldn o = [x8]af =dd 5 = 16, 17;;
ad r5 = TE; T7§j S ocher ingcruccions
=kl [rlg] = 5 f] [ed] = £12
chk_a.clr ré, Faoover
back
scl [E1E8] = x5

4 someubars @lse ln program

TECGVYEE |
148 & = [x8]s;
=~dd 5 = 16, 17
by bBack

Figure 4-3. Data Speculation Recovery Using chi.a

If advanced load succeeds, values are good and can continue;
otherwise have to execute patch up code.

Caltech CS184b Winter2001 -- DeHon

30

15

Advanced Load Support

» Advanced Load Table

» Speculative loads alocate spacein ALAT
— tagged by target register

o ALAT checked against stores
—invalidated if see overwrite

At check or load

—if find valid entry, advanced load succeeded
—if not find entry, failed

Caltech CS184b Vth%rﬂlarWCIQ pa[Chup COde

31

Register “renaming”

o Usetop 96 registers like a stack?
 Still register addressable

» But increment base on
— loops, procedure entry

» Treated like stack with “automatic”
background task to save/restore values

Caltech CS184b Winter2001 -- DeHon

32

16

Register “renaming”

» Application benefits:
— software pipelining without unrolling

— values from previous iterations of loop get
different names (rename all registers allocated

in loop by incrementing base)
« alowsreference to by different names
— pass data through registers
« without compiling caller/callee together
« variable number of registers

Caltech CS184b Winter2001 -- DeHon

33

Register “Renaming”
» ...old bad idea?

— Stack machines?
» Does dlow register named access

— Register Windows (RISC-I1,SPARC)
» SPARC register windows were fixed size
* had to save and restore in that sized chunk
* only window-set visible

Caltech CS184b Winter2001 -- DeHon

17

Register “renaming” Costs

» Slow down register access
— have to do arithmetic on register numbers

» Require hardware register save/restore
engine
— orthogonal task to execution
— complicated?

» Complicates architecture

Caltech CS184b Winter2001 -- DeHon 35

Admin

» Tuesday:
—No CLASS

* Thursday:

— start on caching
— (so start reading chapter 5)

Caltech CS184b Winter2001 -- DeHon 36

18

Big Ideas

» Compile for maximum parallelism

» Seguentialize as necessary
— (moderately) cheap

Caltech CS184b Winter2001 -- DeHon

37

Big Ideas

 Latency reduction hard
— path length is our parallelism limiter

— often good to trade more work for shorter
critical path
* area-time tradeoff
— speculation, predication reduce path length
* perhaps at cost of more total operations

Caltech CS184b Winter2001 -- DeHon

38

19

Big Ideas
[MSB-1]

 Local control (predication)

— costsissue

— increases predictability, parallelism
» Common Case/Speculation

— avoid worst-case pessimism on memory
operations

— common case faster
— correct in all cases

Caltech CS184b Winter2001 -- DeHon 39

20

