
CS184B Winter 2001

California Institute of Technology
Department of Computer Science

Computer Architecture

CS184b, Winter 2000 Assignment 6: VLIW/EPIC Thursday, February 8

Due: Thursday, February 15, 5:00pm

What I want to do here is to give you a chance to develop a feel for both Trace Scheduling
and these organizations/architectures. Working with a small piece of code, you’ll see the
effects/benefits of the structural restrictions (allowances) and the code transformations.

To do this, we’re going to take one small subroutine with branching (included at end). Note
that M1, M2 are powers of two (convince yourself this invariant holds). I think this will be
easier if you make sure to exploit this observation and use it to strength reduce the MOD
and divide to be masks and shifts.

For simplicity, unless otherwise noted, we assume each “cluster” on the VLIW can perform
any single operation (load/store, branch, floating or integer ALU operation including mul-
tiply) on each cycle. Assume one cycle to move a data item between clusters. Assume
everything that executes in the same long instruction with branch(es) completes.

• create and show the trace flowgraph for this routine (in terms of basic cluster opera-
tions).

• schedule for a 4-issue VLIW where you resolve control flow (branches) before executing
code behind the branch (i.e. don’t use trace scheduling, multiple branches, etc.)

• identify the primary trace.

• limit yourself to a single branch per long instructions; trace-schedule the primary trace;
do not schedule the off-trace portions of the flow graph, but do add patch up flowgraph
nodes so that the on-trace schedule and off-trace flowgraph transitions preserve the
original semantics of the program; show your resulting schedule/flowgraph.

• repeat your trace scheduling removing the single branch restriction; again show the
resulting schedule/flowgraph.

• unroll the loop once and repeat schedule.

• convert this primary trace to EPIC (using additional tricks like predicated execution
as you see fit...so you may not strictly be implementing the same primary trace); make
instruction groups as large as you can. For sake of cycle comparison (next), assume
a two-bundle-issue machine with the restrictions on syllables within a bundle given
on p. 19 (simplify by not distinguishing integer and floating point; say at most two
arithmetic type, at most two memory, any number of branches). I don’t expect you to

1

CS184B Winter 2001

write completely runnable IA-64 assembly with all the i’s dotted and t’s crossed, but
if you find it useful to look at the IA-64 architecture references guide, I’ve stashed a
copy in /cs/courses/cs184/assign/b6/.

• summarize the performance comparison (in expected cycles per loop iteration) among
the 5 cases you developed above; you may need to sketch through the off-trace cases
in order get a reasonable estimate:

1. preserve code between branches
2. trace schedule, single branch
3. trace schedule, full branch
4. trace schedule, unroll 2
5. EPIC

Source from John R. Ellis, Bulldog: A Compiler for VLIW Architectures, p. 277.

C Result is put in F to prepare transform iteration.

C

SUBROUTINE SHUFF(S, F, N)

DIMENSION S(1024)

COMPLEX F(1024), CMPLX

DO 5 IFORT = 1, N

I = IFORT -1

J = 0

M2 = 1

1 CONTINUE

M1 = M2

M2 = M2 + M2

IF (MOD(I, M2) .LT. M1) GOTO 3

J = J + N / M2

3 CONTINUE

IF (M2 .LT. N) GOTO 1

JFORT = J + 1

F(IFORT) = CMPLX(S(JFORT).0.)

C Don’t worry about the complex conversion here;

C Treat this as just an array assignment. -- andre

5 CONTINUE

RETURN

END

2

