
CS184B Winter 2001

California Institute of Technology
Department of Computer Science

Computer Architecture

CS184b, Winter 2000 Assignment 2: ISA Characteristics Monday, January 8

Due: Tuesday, January 16, 5:00pm

This assignment is mostly to get you started using simplescalar. I’m asking you to pick
a suitable application, compile it, and do some preliminary profiling using simplescalar. In
later assignments we’ll use additional features of the simplescalar suite to measure the impact
of various effects which we’ll be studying.

To Do

1. Pick a moderate sized program to use in this, and perhaps future, assignments.

• Program should be something which can reasonable run for one or a few million
dynamic instructions. (I want it to be large enough to get statistically significant
results, but small enough that you’re not waiting forever for runs.)

• Program should have reasonable tight source so that building it is easy.

• Aim for a small application (bigger than a kernel, smaller than gcc). I used rijndael
as an example; it’s probably towards the small end. gzip is another example of
about the right size.

• Your program should be able to run non-interactively (input from file or scripted),
since you’ll want to set it off and run it many times.

• Don’t pick something which is completely IO dominated; you’ll get one result
(that it’s IO dominated) and the rest won’t be too interesting to study.

• Rijndael is the newly selected (AES) encryption standard. I built and tested
rijndael in /cs/courses/cs184/assign/Rijndael and have left it there. (I might
play with it more.)

2. Build a simplescalar “PISA” executable using simplescalar’s gcc cross compiler.

• simplescalar support lives in /cs/courses/cs184/software/simplescalar/

• binary executables live in the bin/ subdirectory

• you will be using bin/sslittle-na-sstrix-gcc, at least, and made need other
binary utilities from that directory

3. You probably want to read a bit about simplescalar:

• Note that we are using simplesim-3.0 (the simplesim-2.0.broken subdirectory should
be ignored)

1



CS184B Winter 2001

• Technical Report /cs/courses/cs184/software/simplescalar/TR_1342.ps

• Slides on using /cs/courses/cs184/software/simplescalar/simplesim-3.0/

hack_guide.pdf

4. Verify your program runs under simplescalar using simplesim-3.0/simple-safe.

5. Run your program under the profiler simplesim-3.0/simple-profile.

• you probably want to run it with the -all option to start with and begin getting
familiar with all the things it can profile; later, you may want to focus which
profiling results you request.

6. Compile your program at two different optimization levels (probably none and the
highest which will work); Note the difference in dynamic instructions executed and
distribution of operations.

Turnin

This lab must be returned electronically (HTML preferred). I will link all the labs
off of the web page so the class can share the results to see how the statistics vary among
applications.

1. Identify and briefly describe (1-2 paragraph) selected application. Make sure you
include:

• What does it do? (external function, major algorithmic elements, what kind of
computation do you expect makes up most of the dynamic execution)

• Where did it come from? (proper bibliographic citation, if appropriate)

• Why did you choose it?

• Benchmark dynamic instructions executed (for chosen input sequence—identify
input sequence as well)

2. Summarize the compiler optimization effects (total instructions before and after opti-
mization, breakdown by instruction class before and after optimization).

3. Identify the top 10 instructions by dynamic frequency for the before and after opti-
mization cases and compare these with the data in the text (Figure 2.11) — use a table
or tables comparable to 2.11. If appropriate, comment on the differences among the
three cases.

2


