

Address Space Quote

- The Virtual Address eXtension of the PDP-11 architecture . . . provides a virtual address of about 4.3 gigabytes which, even given the rapid improvement of memory technology, should be adequate far into the future.
- William Strecker, "VAX-11/780—A Virtual address Extension to the PDP-11 Family," *AFIPS Proc., National Computer Conference*, 1978

 Operations: Procedure call/return

 • ? Save registers?

 • Update PC

 - call target

 - return address

 • Change stack and frame pointers

 - store old

 - install new

- Question: How much should instruction do?
- Lesson: High variance in work needs to be done
 - which registers need to save
 - best way to transfer arguments to procedures
 - better to expose primitives to the compiler and let it specialize the set of operations to the particular call

ch CS184 Spring2005 -- DeHon

CS184 Spring2005 -- DeHor

VAX Data								
	TABLE 8							
	Average VAX Instruction Timing (Cycles per Instruction)							
	Compute	Read	R-Stall	Write	W-Stall	IB-Stall	Total	
Decode	1.000					0.613	1.613	
Spec1	0.895	0.306	0.364				1.565	
B Dim	1.052	0.148	0.116	0.161	0.192	0.102	1.771	
D-Disp	0.221					0.005	0.226	
Simple	0.870	0.029	0.017	0.033	0.027		0.077	
Field	0.482	0.049	0.058	0.007	0.002		0.911	
Float	0.292	0.000	0.000	0.008	0.001		0.800	
Call/Ret	0.937	0.133	0.074	0.130	0 184		0.802	
System	0.434	0.015	0.031	0.014	0.028		0.522	
Character	0.318	0.039	0.099	0.046	0.004		0.522	
Decimal	0.026	0.002	0.000	0.001	0.002		0.031	
Int/Except	0.055	0.002	0.005	0.004	0.000			
	0.555	0.061	0.200	0.004	0.000		0.071	
Mem Mngmt	0 100		1.200	0.004	0.003		0.824	
Mem Mngmt Abort	0.127							

Fit Problem

- "A great deal depends on being able to fit an entire CPU design on a single chip."
- "RISC computers benefit from being realizable at an earlier date."

35

ch CS184 Spring2005 -- DeHor

Big Ideas

- Common Case
 - Measure to verify/know what it is!
- Primitives
- Highly specialized instructions brittle
- Design pulls
 - simplify processor implementation
 - simplify coding
- Orthogonallity (limit special cases)
- Compiler: fill in gap between user and hardware architecture 43