
1

Caltech CS184 Spring2005 -- DeHon
1

CS184b:
Computer Architecture

(Abstractions and Optimizations)

Day 24: May 25, 2005
Heterogeneous Computation

Interfacing

Caltech CS184 Spring2005 -- DeHon
2

Previously

• Homogenous model of computational
array
– single word granularity, depth, interconnect
– all post-fabrication programmable

• Understand tradeoffs of each

Caltech CS184 Spring2005 -- DeHon
3

Today

• Heterogeneous architectures
– Why?

• Focus in on Processor + Array hybrids
– Motivation
– Single Threaded Compute Models
– Architecture
– Examples

Caltech CS184 Spring2005 -- DeHon
4

Why?

• Why would we be interested in
heterogeneous architecture?
– E.g.

Caltech CS184 Spring2005 -- DeHon
5

Why?
• Applications have a mix of

characteristics
• Already accepted

– seldom can afford to build most general
(unstructured) array

• bit-level, deep context, p=1
– => are picking some structure to exploit

• May be beneficial to have portions of
computations optimized for different
structure conditions.

Caltech CS184 Spring2005 -- DeHon
6

Examples

• Processor+FPGA
• Processors or FPGA add

– multiplier or MAC unit
– FPU
– Motion Estimation coprocessor

2

Caltech CS184 Spring2005 -- DeHon
7

Optimization Prospect

• Cost capacity for composite than either
pure
– (A1+A2)T12 < A1T1

– (A1+A2)T12 < A2T2

Caltech CS184 Spring2005 -- DeHon
8

Optimization Prospect
Example

• Floating Point
– Task: I integer Ops + F FP-ADDs
– Aproc=125Mλ2

– AFPU=40Mλ2

– I cycles / FP Ops = 60
– 125(I+60F) 165(I+F)

• (7500-165)/40 = I/F
• 183 ≈ I/F

Caltech CS184 Spring2005 -- DeHon
9

Motivational: Other Viewpoints

• Replace interface glue logic
• IO pre/post processing
• Handle real-time responsiveness
• Provide powerful, application-specific

operations
– possible because of previous observation

Caltech CS184 Spring2005 -- DeHon
10

Wide Interest

• PRISM (Brown)
• PRISC (Harvard)
• DPGA-coupled uP

(MIT)
• GARP, Pleiades, …

(UCB)
• OneChip (Toronto)
• REMARC (Stanford)

• NAPA (NSC)
• E5 etc. (Triscend)
• Chameleon
• Quicksilver
• Excalibur (Altera)
• Virtex+PowerPC

(Xilinx)
• Stretch

Caltech CS184 Spring2005 -- DeHon
11

Pragmatics

• Tight coupling important
– numerous (anecdotal) results

• we got 10x speedup…but were bus limited
– would have gotten 100x if removed bus

bottleneck

• Speed Up = Tseq/(Taccel + Tdata)
– e.g. Taccel = 0.01 Tseq
– Tdata = 0.10 Tseq

Caltech CS184 Spring2005 -- DeHon
12

Key Questions

• How do we co-architect these devices?
• What is the compute model for the

hybrid device?

3

Caltech CS184 Spring2005 -- DeHon
13

Compute Models
• Unaffected by array logic (interfacing)
• Dedicated IO Processor

– Specialized multithreaded
• Instruction Augmentation

– Special Instructions / Coprocessor Ops
– VLIW/microcoded extension to processor
– Configurable Vector unit

• Memory⇒memory coprocessor

Caltech CS184 Spring2005 -- DeHon
14

Interfacing

Caltech CS184 Spring2005 -- DeHon
15

Model: Interfacing

• Logic used in place
of
– ASIC environment

customization
– external FPGA/PLD

devices
• Example

– bus protocols
– peripherals
– sensors, actuators

• Case for:
– Always have some

system adaptation to do
– Modern chips have

capacity to hold processor
+ glue logic

– reduce part count
– Glue logic vary
– value added must now be

accommodated on chip
(formerly board level)

Caltech CS184 Spring2005 -- DeHon
16

Example:
Interface/Peripherals

• Triscend E5

Caltech CS184 Spring2005 -- DeHon
17

IO Processor

Caltech CS184 Spring2005 -- DeHon
18

Model: IO Processor
• Array dedicated to

servicing IO channel
– sensor, lan, wan,

peripheral
• Provides

– protocol handling
– stream computation

• compression, encrypt

• Looks like IO
peripheral to
processor

• Maybe processor can
map in
– as needed
– physical space permitting

• Case for:
– many protocols, services
– only need few at a time
– dedicate attention, offload

processor

4

Caltech CS184 Spring2005 -- DeHon
19

IO Processing

• Single threaded processor
– cannot continuously monitor multiple data

pipes (src, sink)
– need some minimal, local control to handle

events
– for performance or real-time guarantees ,

may need to service event rapidly
– E.g. checksum (decode) and acknowledge

packet
Caltech CS184 Spring2005 -- DeHon

20
Source: National Semiconductor

NAPA 1000 Block Diagram

RPC
Reconfigurable
Pipeline Cntr

ALP
Adaptive Logic

Processor

System
Port

TBT
ToggleBusTM

Transceiver

PMA
Pipeline

Memory Array

CR32
CompactRISCTM

32 Bit Processor

BIU
Bus Interface

Unit

CR32
Peripheral
Devices

External
Memory
Interface SMA

Scratchpad
Memory Array

CIO
Configurable

I/O

Caltech CS184 Spring2005 -- DeHon
21

Source: National Semiconductor

NAPA 1000 as IO Processor
SYSTEM

HOST

NAPA1000

ROM &
DRAM

Application
Specific

Sensors, Actuators, or
other circuits

System Port

CIO

Memory Interface

Caltech CS184 Spring2005 -- DeHon
22

Instruction Augmentation

Caltech CS184 Spring2005 -- DeHon
23

Model: Instruction
Augmentation

• Observation: Instruction Bandwidth
– Processor can only describe a small

number of basic computations in a cycle
• I bits →2I operations

– This is a small fraction of the operations
one could do even in terms of w⊗w→w
Ops

• w22(2w) operations

Caltech CS184 Spring2005 -- DeHon
24

Model: Instruction
Augmentation (cont.)

• Observation: Instruction Bandwidth
– Processor could have to issue w2(2 (2w) -I)

operations just to describe some
computations

– An a priori selected base set of functions
could be very bad for some applications

5

Caltech CS184 Spring2005 -- DeHon
25

Instruction Augmentation

• Idea:
– provide a way to augment the processor’s

instruction set
– with operations needed by a particular

application
– close semantic gap / avoid mismatch

Caltech CS184 Spring2005 -- DeHon
26

Instruction Augmentation

• What’s required:
1. some way to fit augmented instructions

into instruction stream
2. execution engine for augmented

instructions
• if programmable, has own instructions

3. interconnect to augmented instructions

Caltech CS184 Spring2005 -- DeHon
27

PRISC

• How integrate into processor ISA?

[Razdan+Smith: Harvard]
Caltech CS184 Spring2005 -- DeHon

28

PRISC
• Architecture:

– couple into register file as “superscalar”
functional unit

– flow-through array (no state)

Caltech CS184 Spring2005 -- DeHon
29

PRISC

• ISA Integration
– add expfu instruction
– 11 bit address space for user defined expfu

instructions
– fault on pfu instruction mismatch

• trap code to service instruction miss
– all operations occur in clock cycle
– easily works with processor context switch

• no state + fault on mismatch pfu instr
Caltech CS184 Spring2005 -- DeHon

30

PRISC Results

• All compiled
• working from MIPS

binary
• <200 4LUTs ?

– 64x3
• 200MHz MIPS base

Razdan/Micro27

6

Caltech CS184 Spring2005 -- DeHon
31

Chimaera

• Start from PRISC idea
– integrate as functional unit
– no state
– RFUOPs (like expfu)
– stall processor on instruction miss, reload

• Add
– manage multiple instructions loaded
– more than 2 inputs possible

[Hauck: Northwestern]
Caltech CS184 Spring2005 -- DeHon

32

Chimaera Architecture

• “Live” copy of
register file values
feed into array

• Each row of array
may compute from
register values or
intermediates (other
rows)

• Tag on array to
indicate RFUOP

Caltech CS184 Spring2005 -- DeHon
33

Chimaera Architecture

• Array can compute on values as soon
as placed in register file

• Logic is combinational
• When RFUOP matches

– stall until result ready
• critical path

– only from late inputs
– drive result from matching row

Caltech CS184 Spring2005 -- DeHon
34

Chimaera Timing

• If presented
– R1, R2
– R3
– R5
– can complete in one cycle

• If R1 presented last
– will take more than one cycle for operation

Caltech CS184 Spring2005 -- DeHon
35

Chimaera Results

Speedup
• Compress 1.11
• Eqntott 1.8
• Life 2.06 (160 hand parallelization)

[Hauck/FCCM97]
Caltech CS184 Spring2005 -- DeHon

36

Instruction Augmentation

• Small arrays with limited state
– so far, for automatic compilation

• reported speedups have been small
– open

• discover less-local recodings which extract
greater benefit

7

Caltech CS184 Spring2005 -- DeHon
37

GARP Motivation

• Single-cycle flow-through
– not most promising usage style

• Moving data through RF to/from array
– can present a limitation

• bottleneck to achieving high computation rate

[Hauser+Wawrzynek: UCB]
Caltech CS184 Spring2005 -- DeHon

38

GARP
• Integrate as coprocessor

– similar bwidth to processor as FU
– own access to memory

• Support multi-cycle operation
– allow state
– cycle counter to track operation

• Fast operation selection
– cache for configurations
– dense encodings, wide path to memory

Caltech CS184 Spring2005 -- DeHon
39

GARP
• ISA -- coprocessor operations

– issue gaconfig to make a particular
configuration resident (may be active or cached)

– explicitly move data to/from array
• 2 writes, 1 read (like FU, but not 2W+1R)

– processor suspend during coproc operation
• cycle count tracks operation

– array may directly access memory
• processor and array share memory space

– cache/mmu keeps consistent between
• can exploit streaming data operations

Caltech CS184 Spring2005 -- DeHon
40

GARP

• Processor Instructions

Caltech CS184 Spring2005 -- DeHon
41

GARP Array

• Row oriented logic
– denser for datapath

operations
• Dedicated path for

– processor/memory
data

• Processor not have
to be involved in
array⇔memory path

Caltech CS184 Spring2005 -- DeHon
42

GARP Hand Results

[Callahan, Hauser, Wawrzynek. IEEE Computer, April 2000]

8

Caltech CS184 Spring2005 -- DeHon
43

GARP Compiler Results

[Callahan, Hauser, Wawrzynek. IEEE Computer, April 2000]
Caltech CS184 Spring2005 -- DeHon

44

Common Theme

• To get around instruction expression
limits
– define new instruction in array

• many bits of config … broad expressability
• many parallel operators

– give array configuration short “name” which
processor can callout

• …effectively the address of the operation

Caltech CS184 Spring2005 -- DeHon
45

VLIW/microcoded Model

• Similar to instruction augmentation
• Single tag (address, instruction)

– controls a number of more basic
operations

• E.g. Silicon Spice SpiceEngine

• Some difference in expectation
– can sequence a number of different

tags/operations together

46 MPF 2001

SpiceEngine™ ArchitectureSpiceEngine™ Architecture
• 1 KB Vector Registers

–Fast structured data access
–Reduce memory demand
–Preload vector registers to

hide memory latency
• 10 Parallel ops/cycle

–Fixed-point DSP arithmetic
–Configurable 16/32/40 bits
–ITU saturation arithmetic

• Wide configuration issue
–Compiler generates, preloads
–Dynamic reconfiguration

MMU

ALU
40/32/16

MUL
17 x 17

SHIFT
40/32/16

ALU
32

Configuration
Registers

8 x 128

Instruction
Cache
384 x 24

Shared Program Memory Interface

Vector
Registers

256 x 32
512 x 16
1024 x 8

Vector
Address

Units

Vector
Load/Store

Accumulators
2 x 40

MReg
33

Registers
16 x 32

Load/
Store

Shared Data Memory Interface

BITU
32

VAU
Regs
16 x 10

[Nicholls/MPF 2001]

47 MPF 2001

Instruction / Configuration ControlInstruction / Configuration Control

• Fetch 24-bit instructions from cached shared memory
– Instruction field cn selects a Configuration Register

• Issue combined instruction and 128-bit configuration cn
–Compiler/program preloads configuration registers from memory

• Dynamically reconfigure and control execution units

Execution Controls

PC

Shared Program Memory Interface

Combined Instruction and Configuration Decode

operandscnop

Configuration Load Cache Fill

Configuration Select
MUL ALU SHIFT BITU VREG CFG

Instruction Fetch

Configuration Registers c0 – c7
Instruction Cache

384 x 24

128 128

128 24 3

[Nicholls/MPF 2001]
Caltech CS184 Spring2005 -- DeHon

48

Vector and Shared Memory

9

Caltech CS184 Spring2005 -- DeHon
49

Configurable Vector Unit
Model

• Perform vector
operation on
datastreams

• Setup spatial
datapath to
implement operator
in configurable
hardware

• Potential benefit in
ability to chain
together operations
in datapath

• May be way to use
GARP/NAPA?

• OneChip (to
come…)

Caltech CS184 Spring2005 -- DeHon
50

Observation

• All single threaded
– limited to parallelism

• instruction level (VLIW, bit-level)
• data level (vector/stream/SIMD)

– no task/thread level parallelism
• except for IO dedicated task parallel with

processor task

Caltech CS184 Spring2005 -- DeHon
51

Scaling
• Can scale

– number of inactive contexts
– number of PFUs in PRISC/Chimaera

• but still limited by single threaded execution
(ILP)

• exacerbate pressure/complexity of
RF/interconnect

• Cannot scale
– number of active resources

• and have automatically exploited
Caltech CS184 Spring2005 -- DeHon

52

Processor/FPGA run in
Parallel?

• What would it take to let the processor
and FPGA run in parallel?
– And still get reasonable program

semantics?

Caltech CS184 Spring2005 -- DeHon
53

Modern Processors

• Deal with
– variable delays
– dependencies
– multiple (unknown to compiler) func. units

• Via
– register scoreboarding
– runtime dataflow (Tomasulo)

Caltech CS184 Spring2005 -- DeHon
54

Dynamic Issue

• PRISC (Chimaera?)
– register→register, work with scoreboard

• GARP
– works with memory system, so register

scoreboard not enough

10

Caltech CS184 Spring2005 -- DeHon
55

OneChip Memory Interface
[1998]

• Want array to have direct
memory→memory operations

• Want to fit into programming model/ISA
– w/out forcing exclusive processor/FPGA

operation
– allowing decoupled processor/array

execution

[Jacob+Chow: Toronto]
Caltech CS184 Spring2005 -- DeHon

56

OneChip

• Key Idea:
– FPGA operates on memory→memory

regions
– make regions explicit to processor issue
– scoreboard memory blocks

• Synchronize exclusive access

Caltech CS184 Spring2005 -- DeHon
57

OneChip Pipeline

Caltech CS184 Spring2005 -- DeHon
58

OneChip Instructions

• Basic Operation is:
– FPGA MEM[Rsource]→MEM[Rdst]

• block sizes powers of 2

• Supports 14 “loaded” functions
– DPGA/contexts so 4 can be cached

Caltech CS184 Spring2005 -- DeHon
59

OneChip

• Basic op is: FPGA MEM→MEM
• no state between these ops
• coherence is that ops appear sequential
• could have multiple/parallel FPGA

Compute units
– scoreboard with processor and each other

• single source operations?
• can’t chain FPGA operations?

Caltech CS184 Spring2005 -- DeHon
60

Model Roundup
• Interfacing
• IO Processor (Asynchronous)
• Instruction Augmentation

– PFU (like FU, no state)
– Synchronous Coproc
– VLIW
– Configurable Vector

• Memory⇒memory coprocessor

11

Caltech CS184 Spring2005 -- DeHon
61

Big Ideas

• Exploit structure
– area benefit to
– tasks are heterogeneous
– mixed device to exploit

• Instruction description
– potential bottleneck
– custom “instructions” to exploit

Caltech CS184 Spring2005 -- DeHon
62

Big Ideas

• Spatial
– denser raw computation
– supports definition of powerful instructions

• assign short name --> descriptive benefit
• build with spatial --> dense collection of active

operators to support

– efficient way to support
• repetitive operations
• bit-level operations

Caltech CS184 Spring2005 -- DeHon
63

Big Ideas
• Model

– for heterogeneous composition
– preserving semantics
– limits of sequential control flow
– decoupled execution
– avoid sequentialization / expose parallelism w/in

model
• extend scoreboarding/locking to memory
• important that memory regions appear in model

– tolerate variations in implementations
– support scaling

