
1

Caltech CS184 Spring2005 -- DeHon
1

CS184b:
Computer Architecture

(Abstractions and Optimizations)

Day 21:  May 18, 2005
Shared Memory

Caltech CS184 Spring2005 -- DeHon
2

Today

• Shared Memory
– Model
– Bus-based Snooping
– Cache Coherence
– Distributed Shared Memory

Caltech CS184 Spring2005 -- DeHon
3

Shared Memory Model

• Same model as multithreaded 
uniprocessor
– Single, shared, global address space
– Multiple threads (PCs)
– Run in same address space
– Communicate through memory

• Memory appear identical between threads
• Hidden from users (looks like memory op)

Caltech CS184 Spring2005 -- DeHon
4

Synchronization

• For correctness have to worry about 
synchronization
– Otherwise non-deterministic behavior
– Threads run asynchronously
– Without additional/synchronization 

discipline 
• Cannot say anything about relative timing

• Subject of Friday’s Lecture

Caltech CS184 Spring2005 -- DeHon
5

Models

• Conceptual model: 
– Processor per thread
– Single shared memory

• Programming Model: 
– Sequential language
– Thread package
– Synchronization primitives

• Architecture Model: Multithreaded 
uniprocessor

Caltech CS184 Spring2005 -- DeHon
6

Conceptual Model

Memory



2

Caltech CS184 Spring2005 -- DeHon
7

Architecture Model 
Implications

• Coherent view of memory
– Any processor reading at time X will see 

same value
– All writes eventually effect memory 

• Until overwritten
– Writes to memory seen in same order by 

all processors
• Sequentially Consistent Memory View

Caltech CS184 Spring2005 -- DeHon
8

Sequential Consistency

• Memory must reflect some valid 
sequential interleaving of the threads

Caltech CS184 Spring2005 -- DeHon
9

Sequential Consistency

• P1:  A = 0
•
• A = 1
• L1:   if (B==0)

• P2:  B = 0

• B = 1
• L2:  if (A==0)

Can both conditionals be true?

Caltech CS184 Spring2005 -- DeHon
10

Sequential Consistency

• P1:  A = 0
•
• A = 1
• L1:   if (B==0)

• P2:  B = 0

• B = 1
• L2:  if (A==0)

Both can be false

Caltech CS184 Spring2005 -- DeHon
11

Sequential Consistency

• P1:  A = 0
•
• A = 1
• L1:   if (B==0)

• P2:  B = 0

• B = 1
• L2:  if (A==0)

If enter L1, then A must be 1
not enter L2

Caltech CS184 Spring2005 -- DeHon
12

Sequential Consistency

• P1:  A = 0
•
• A = 1
• L1:   if (B==0)

• P2:  B = 0

• B = 1
• L2:  if (A==0)

If enter L2, then B must be 1
not enter L1



3

Caltech CS184 Spring2005 -- DeHon
13

Coherence Alone

• Coherent view of memory
– Any processor reading at time X will see 

same value
– All writes eventually effect memory 

• Until overwritten
– Writes to memory seen in same order by 

all processors
• Coherence alone does not guarantee 

sequential consistency

Caltech CS184 Spring2005 -- DeHon
14

Sequential Consistency

• P1:  A = 0
•
• A = 1
• L1:   if (B==0)

• P2:  B = 0

• B = 1
• L2:  if (A==0)

If not force visible changes of variable,
(assignments of A, B), could end up
inside both.

Caltech CS184 Spring2005 -- DeHon
15

Consistency

• Deals with when written value must be 
seen by readers

• Coherence – w/ respect to same 
memory location

• Consistency – w/ respect to other 
memory locations

• …there are less strict consistency 
models…

Caltech CS184 Spring2005 -- DeHon
16

Implementation

Caltech CS184 Spring2005 -- DeHon
17

Naïve

• What’s wrong with naïve model?

Memory

Caltech CS184 Spring2005 -- DeHon
18

What’s Wrong?

• Memory bandwidth
– 1 instruction reference per instruction
– 0.3 memory references per instruction
– 333ps cycle
– N*5 Gwords/s ?

• Interconnect
• Memory access latency



4

Caltech CS184 Spring2005 -- DeHon
19

Optimizing

• How do we improve?

Caltech CS184 Spring2005 -- DeHon
20

Naïve Caching

• What happens when add caches to 
processors?

Memory

P$ P$ P$ P$

Caltech CS184 Spring2005 -- DeHon
21

Naïve Caching

• Cached answers may be stale
• Shadow the correct value

Caltech CS184 Spring2005 -- DeHon
22

How have both?

• Keep caching
– Reduces main memory bandwidth
– Reduces access latency

• Satisfy Model

Caltech CS184 Spring2005 -- DeHon
23

Cache Coherence

• Make sure everyone sees same values
• Avoid having stale values in caches
• At end of write, all cached values should 

be the same

Caltech CS184 Spring2005 -- DeHon
24

Idea
• Make sure everyone sees the new value
• Broadcast new value to everyone who 

needs it
– Use bus in shared-bus system

Memory

P$ P$ P$ P$



5

Caltech CS184 Spring2005 -- DeHon
25

Effects

• Memory traffic is now just:
– Cache misses
– All writes

Caltech CS184 Spring2005 -- DeHon
26

Additional Structure?

• Only necessary to write/broadcast a 
value if someone else has it cached

• Can write locally if know sole owner
– Reduces main memory traffic
– Reduces write latency

Caltech CS184 Spring2005 -- DeHon
27

Idea

• Track usage in cache state
• “Snoop” on shared bus to detect 

changes in state

Memory

P$ P$ P$ P$

RD 0300… Someone
Has copy…

Caltech CS184 Spring2005 -- DeHon
28

Cache State
• Data in cache can be in one of several states

– Not cached (not present)
– Exclusive (not shared)

• Safe to write to
– Shared

• Must share writes with others

• Update state with each memory op

Caltech CS184 Spring2005 -- DeHon
29

Cache Protocol

[Culler/Singh/Gupta 5.13]

RdX = Read Exclusive

Perform Write by:
•Reading exclusive
•Writing locally

Caltech CS184 Spring2005 -- DeHon
30

Snoopy Cache Organization

[Culler/Singh/Gupta 6.4]



6

Caltech CS184 Spring2005 -- DeHon
31

Cache States

• Extra bits in cache
– Like valid, dirty

Caltech CS184 Spring2005 -- DeHon
32

Misses

#s are cache
line size

[Culler/Singh/Gupta 5.23]

Caltech CS184 Spring2005 -- DeHon
33

Misses

[Culler/Singh/Gupta 5.27]
Caltech CS184 Spring2005 -- DeHon

34

Distributed Shared Memory

Caltech CS184 Spring2005 -- DeHon
35

Review
• Shared Memory 

– Programming Model
– Architectural Model
– Shared-Bus Implementation
– Caching Possible w/ Care for Coherence

Memory

P$ P$ P$ P$

Caltech CS184 Spring2005 -- DeHon
36

Previously

• Message Passing
– Minimal concurrency model
– Admits general network (not just bus)
– Messaging overheads and optimization



7

Caltech CS184 Spring2005 -- DeHon
37

Last Half

• Distributed Shared Memory
– No broadcast
– Memory distributed among nodes
– Directory Schemes
– Built on Message Passing Primitives

Caltech CS184 Spring2005 -- DeHon
38

Snoop Cache Review

• Why did we need broadcast in Snoop-
Bus protocol?

Caltech CS184 Spring2005 -- DeHon
39

Snoop Cache

• Why did we need broadcast in Snoop-
Bus protocol?

– Detect sharing
– Get authoritative answer when dirty

Caltech CS184 Spring2005 -- DeHon
40

Scalability Problem?

• Why can’t we use Snoop protocol with 
more general/scalable network?
– Mesh
– fat-tree
– multistage network

• Single memory bottleneck?

Caltech CS184 Spring2005 -- DeHon
41

Misses

#s are cache
line size

[Culler/Singh/Gupta 5.23]
Caltech CS184 Spring2005 -- DeHon

42

Sub Problems

• How does exclusive owner know when 
sharing created?

• How know every user?
– know who needs invalidation?

• How find authoritative copy?
– when dirty and cached?



8

Caltech CS184 Spring2005 -- DeHon
43

Distributed Memory

• Could use Banking to provide memory 
bandwidth
– have network between processor nodes 

and memory banks
• …But, already need network connecting 

processors
• Unify interconnect and modules

– each node gets piece of “main” memory

Caltech CS184 Spring2005 -- DeHon
44

Distributed Memory

P$

Mem CC

P$

Mem CC

P$

Mem CC

Network

Caltech CS184 Spring2005 -- DeHon
45

“Directory” Solution

• Main memory keeps track of users of 
memory location

• Main memory acts as rendezvous point
• On write, 

– inform all users
• only need to inform users, not everyone

• On dirty read,
– forward read request to owner

Caltech CS184 Spring2005 -- DeHon
46

Directory

• Initial Ideal
– main memory/home location knows

• state (shared, exclusive, unused)
• all sharers

Caltech CS184 Spring2005 -- DeHon
47

Directory Behavior

• On read:
– unused

• give (exclusive) copy to requester
• record owner

– (exclusive) shared
• (send share message to current exclusive 

owner)
• record user
• return value

Caltech CS184 Spring2005 -- DeHon
48

Directory Behavior

• On read:
– exclusive dirty

• forward read request to exclusive owner



9

Caltech CS184 Spring2005 -- DeHon
49

Directory Behavior

• On Write
– send invalidate messages to all hosts 

caching values
• On Write-Thru/Write-back

– update value

Caltech CS184 Spring2005 -- DeHon
50

Directory

[HP 8.24e2/6.29e3 and 8.25e2/6.30e3]

Individual Cache Block Directory 

Caltech CS184 Spring2005 -- DeHon
51

Representation

• How do we keep track of readers 
(owner) ?
– Represent 
– Manage in Memory

Caltech CS184 Spring2005 -- DeHon
52

Directory Representation

• Simple:
– bit vector of readers
– scalability?

• State requirements scale as square of number 
of processors

• Have to pick maximum number of processors 
when committing hardware design

Caltech CS184 Spring2005 -- DeHon
53

Directory Representation

• Limited:
– Only allow a small (constant) number of 

readers
– Force invalidation to keep down
– Common case: little sharing
– weakness:

• yield thrashing/excessive traffic on heavily 
shared locations

– e.g. synchronization variables

Caltech CS184 Spring2005 -- DeHon
54

Directory Representation

• LimitLESS
– Common case: small number sharing in 

hardware
– Overflow bit
– Store additional sharers in central memory
– Trap to software to handle
– TLB-like solution

• common case in hardware
• software trap/assist for rest



10

Caltech CS184 Spring2005 -- DeHon
55

Alewife Directory Entry

[Agarwal et. al. ISCA’95]
Caltech CS184 Spring2005 -- DeHon

56

Alewife Timings

[Agarwal et. al. ISCA’95]

Caltech CS184 Spring2005 -- DeHon
57

Alewife Nearest Neighbor
Remote Access Cycles

[Agarwal et. al. ISCA’95]
Caltech CS184 Spring2005 -- DeHon

58

Alewife Performance

[Agarwal et. al. ISCA’95]

Caltech CS184 Spring2005 -- DeHon
59

Alewife “Software” Directory

• Claim: Alewife performance only 2-3x 
worse with pure software directory 
management

• Only affects (slows) on memory side
– still have cache mechanism on requesting 

processor side

Caltech CS184 Spring2005 -- DeHon
60

Alewife Primitive Op 
Performance

[Chaiken+Agarwal,
ISCA’94]



11

Caltech CS184 Spring2005 -- DeHon
61

Alewife Software Data

[y: speedup
x: hardware

pointers]

[Chaiken+Agarwal,   ISCA’94] Caltech CS184 Spring2005 -- DeHon
62

Caveat
• We’re looking at simplified version
• Additional care needed

– write (non) atomicity
• what if two things start a write at same time?

– Avoid thrashing/livelock/deadlock
– Network blocking?
– …

• Real protocol states more involved
– see HP, Chaiken, Culler and Singh...

Caltech CS184 Spring2005 -- DeHon
63

Digesting…

Caltech CS184 Spring2005 -- DeHon
64

Common Case Fast

• Common case
– data local and in cache
– satisfied like any cache hit 

• Only go to messaging on miss
– minority of accesses (few percent)

Caltech CS184 Spring2005 -- DeHon
65

Model Benefits

• Contrast with completely software 
“Uniform Addressable Memory” in pure 
MP
– must form/send message in all cases

• Here:
– shared memory captured in model
– allows hardware to support efficiently
– minimize cost of “potential” parallelism

• incl. “potential” sharing
Caltech CS184 Spring2005 -- DeHon

66

General Alternative?

• This requires including the semantics of 
the operation deeply in the model

• Very specific hardware support
• Can we generalize?  
• Provide more broadly useful 

mechanism?
• Allows software/system to decide?

– (idea of Active Messages)



12

Caltech CS184 Spring2005 -- DeHon
67

Big Ideas

• Simple Model
– Preserve model
– While optimizing implementation

• Exploit Locality
– Reduce bandwidth and latency

Caltech CS184 Spring2005 -- DeHon
68

Big Ideas

• Model
– importance of strong model
– capture semantic intent
– provides opportunity to satisfy in various 

ways
• Common case

– handle common case efficiently
– locality

Caltech CS184 Spring2005 -- DeHon
69

Big Ideas

• Hardware/Software tradeoff
– perform common case fast in hardware
– handoff uncommon case to software


