
1

Caltech CS184 Spring2005 -- DeHon
1

CS184b:
Computer Architecture

(Abstractions and Optimizations)

Day 15: May 4, 2005
Message Passing

Caltech CS184 Spring2005 -- DeHon
2

Today

• Message Passing Model
• Examples
• Performance Issues
• Design for Multiprocessing

– Engineering “Low cost” messaging

Caltech CS184 Spring2005 -- DeHon
3

Message Passing

• Simple extension to Models
– Compute Model
– Programming Model
– Architecture

• Low-level

Caltech CS184 Spring2005 -- DeHon
4

Message Passing Model
• Collection of sequential processes
• Processes may communicate with each

other (messages)
– send
– receive

• Each process runs sequentially
– has own address space

• Abstraction is each process gets own
processor (essentially multi-tasking
model)

Caltech CS184 Spring2005 -- DeHon
5

Programming for MP

• Have a sequential language
– C, C++, Fortran, lisp…

• Add primitives (system calls)
– send
– receive
– Spawn
– (multitasking primitives with no shared

memory)

Caltech CS184 Spring2005 -- DeHon
6

Architecture for MP

• Sequential Architecture for processing
node
– add network interfaces
– (process have own address space)

• Add network connecting processors

• …minimally sufficient...

2

Caltech CS184 Spring2005 -- DeHon
7

MP Architecture Virtualization

• Processes virtualize nodes [0,1,infinity]
– size independent/scalable

• Virtual connections between processes
– placement independent communication

Caltech CS184 Spring2005 -- DeHon
8

MP Example and
Performance Issues

Caltech CS184 Spring2005 -- DeHon
9

N-Body Problem

• Compute pairwise gravitational forces
• Integrate positions

Caltech CS184 Spring2005 -- DeHon
10

Coding

• // params position, mass….
• F=0
• For i = 1 to N

– send my params to p[body[i]]
– get params from p[body[i]]
– F+=force(my params, params)

• Update pos, velocity
• Repeat

Caltech CS184 Spring2005 -- DeHon
11

Performance

• Body Work ~= cN
• × N processes
• Cycle work ~= cN2

• Ideal Np processor time: cN2/Np

Caltech CS184 Spring2005 -- DeHon
12

Performance Sequential

• Body work:
– read N values
– compute N force updates
– compute pos/velocity from F and params

• c=t(read value) + t(compute force) +
t(write value)

3

Caltech CS184 Spring2005 -- DeHon
13

Performance MP

• Body work:
– send N messages
– receive N messages
– compute N force updates
– compute pos/velocity from F and params

• c=t(send message) + t(receive
message) + t(compute force)

Caltech CS184 Spring2005 -- DeHon
14

Send/receive

• t(receive)
– wait on message delivery
– swap to kernel
– copy data
– return to process

• t(send)
– similar

• t(send), t(receive) >> t(read value)

Caltech CS184 Spring2005 -- DeHon
15

Sequential vs. MP

• Tseq = cseq N2

• Tmp=cmpN2/Np

• Speedup = Tseq/Tmp = cseq × Np /cmp

• Assuming no waiting:
– cseq /cmp ≈(t(read)+t(write))/ (t(send)+t(rcv))

Caltech CS184 Spring2005 -- DeHon
16

Waiting?

• Assume no network congestion:
• Must wait L(net) time after message

sent to receive
• if insufficient parallelism

– latency dominate performance

Caltech CS184 Spring2005 -- DeHon
17

Dertouzous Latency Bound

• Speedup Upper
Bound
– processes / Latency

Caltech CS184 Spring2005 -- DeHon
18

Dertouzous Latency Bound
• Speedup Upper

Bound
– processes / Latency

4

Caltech CS184 Spring2005 -- DeHon
19

Coding/Waiting

• For i = 1 to N
– send my params to p[body[i]]
– get params from p[body[i]]
– F+=force(my params, params)

• How long processsor i wait for first
datum?
– Parallelism profile?

• Is queuing optional?

Caltech CS184 Spring2005 -- DeHon
20

More Parallelism

• For i = 1 to N
– send my params to p[body[i]]

• For i = 1 to N
– get params from p[body[i]]
– F+=force(my params, params)

Caltech CS184 Spring2005 -- DeHon
21

Dispatching

• Multiple processes on node
• Who to run?

– Can a receive block waiting?

Caltech CS184 Spring2005 -- DeHon
22

Dispatching

• Abstraction is each process gets own
processor

• If receive blocks (holds processor)
– may prevent another process from running

upon which it depends
• Consider 2-body problem on 1 node

Caltech CS184 Spring2005 -- DeHon
23

Seitz Coding

[Seitz/CACM’85: Fig. 5]
Caltech CS184 Spring2005 -- DeHon

24

MP Issues

5

Caltech CS184 Spring2005 -- DeHon
25

Expensive Communication

• Process to process communication
goes through operating system
– system call, process switch
– exit processor, network, enter processor
– system call, processes switch

• Milliseconds?
– Thousands to millions of cycles...

Caltech CS184 Spring2005 -- DeHon
26

Why OS involved?

• Protection/Isolation
– can this process send/receive with this

other process?
• Translation

– where does this message need to go?
• Scheduling

– who can/should run now?

Caltech CS184 Spring2005 -- DeHon
27

Issues
• Process Placement

– locality
– load balancing

• Cost for excessive parallelism
– E.g. N-body on Np < N processor ?

• Message hygiene
– ordering, single delivery, buffering

• Deadlock
– user introduce, system introduce

Caltech CS184 Spring2005 -- DeHon
28

Low-Level Model

• Places burden on user [too much]
– decompose problem explicitly

• sequential chunk size not abstract
• scalability weakness in architecture

– guarantee correctness in face of non-
determinism

– placement/load-balancing
• in some systems

• Gives considerable explicit control

Caltech CS184 Spring2005 -- DeHon
29

Low-Level Primitives

• Has the necessary primitives for
multiprocessor cooperation

• Maybe an appropriate compiler target?
– Architecture model, but not

programming/compute model?

Caltech CS184 Spring2005 -- DeHon
30

Problem 1

• Messages take milliseconds
– (1000 106s of cycles)

• Forces use of coarse-grained
parallelism
– Speedup = Tseq/Tmp = cseq × Np /cmp

– cseq /cmp ~= t(comp) / (t(comm)+ t(comp))
– driven to make t(comp) >> t(comm)

6

Caltech CS184 Spring2005 -- DeHon
31

Problem 2

• Potential parallelism is costly
– additional communication cost is born even

when sequentialized (same node)
• Process to process switch expensive
• Discourages exposing maximum

parallelism
– works against simple/scalable model

Caltech CS184 Spring2005 -- DeHon
32

Bad Cost Model

• Challenge
– give programmer a simple model of how to

write good programs
• Here

– exposing parallelism increases performance
• but has cost

– expose too much will decrease
– hard for user to know which

Caltech CS184 Spring2005 -- DeHon
33

Bad Model

• Poor User-level abstraction: user
should not be picking granularity of
exploited parallelism
– this should be done by tools

Caltech CS184 Spring2005 -- DeHon
34

Cosmic Cube
• Early 1980s
• Used commodity hardware

– off the shelf solution
– components not engineered for parallel

scenario
• Showed

– could get benefit out of parallelism
– exposed issues need to address to do it right
– …why need to do something different

Caltech CS184 Spring2005 -- DeHon
35

Mechanisms…

Caltech CS184 Spring2005 -- DeHon
36

Design for Parallelism

• To do it right
– need to engineer for parallelism

• Optimize key common cases here
• Figuring out:

– what goes in hardware vs. software

7

Caltech CS184 Spring2005 -- DeHon
37

Vision: MDP/Mosaic
• Single-chip, commodity building block

– [today, tile to step and repeat on die]
– contains all computing components

• compute: sequential processor
• interconnect in space: net interface + network
• interconnect in time: memory

• Step-and-repeat competent μP
– avoid diminishing returns trying to build

monolithic processor

Caltech CS184 Spring2005 -- DeHon
38

Message Driven Processor

• “Mechanism” Driven Processor?
– Study mechanisms needed for a parallel

processing node
– address problems saw in using existing

• View as low-level (hardware) model
– underlies range of compute models

• shared memory, dataflow, data parallel

[Dally et. al./IEEE Micro, April 1992]

Caltech CS184 Spring2005 -- DeHon
39

Philosophy of MDP

• mechanisms=primitives
– like RISC focus on primitives from which to

build powerful operations
• common support not model specific

– like RISC not language specific
• Hardware/software interface

– what should hardware support/provide
– vs. what should be composed in software

Caltech CS184 Spring2005 -- DeHon
40

MP Primitives

• SEND message
• self [hardware] routed network
• message dispatch
• fast context switch
• naming/translation support
• synchronization

Caltech CS184 Spring2005 -- DeHon
41

MDP Components

[Dally et. al.
IEEE Micro 4/92]

Caltech CS184 Spring2005 -- DeHon
42

MDP Organization

[Dally et. al.
ICCD’92]

8

Caltech CS184 Spring2005 -- DeHon
43

Message Send

• Ops
– SEND, SEND2
– SENDE, SEND2E

• ends messages

• to make “atomic”
– SEND{2} disable interrupts
– SEND{2}E reenable

Caltech CS184 Spring2005 -- DeHon
44

Message Send Sequence

• Send R0,0
; first word is destination node address
; priority 0

• SEND2 R1,R2,0
; opcode at receiver (translated to instr ptr)
; data

• SEND2E R2,[3,A3],0
; data and end message

Caltech CS184 Spring2005 -- DeHon
45

MDP Messages

• Few cycles to inject
• Not doing translation here

– have to map from process to processor
before can send

• done by user code?
• Trust user code?

– Deliver to operation (address) on other end
• receiver translates op to address
• no protection

Caltech CS184 Spring2005 -- DeHon
46

Network
• 3D Mesh

– wormhole
– minimal buffering
– dimension order routing

• hardware routed
– orthogonal to node except enter/exit

• messages can backup
– …all the way to sender

Caltech CS184 Spring2005 -- DeHon
47

Context Switch

• Why context switch expensive?
– Exchange state (save/restore)

• Registers
• PC, etc.
• TLB/cache...

Caltech CS184 Spring2005 -- DeHon
48

Fast Context Switch

• General technique:
– internal vs. external setup

• Machine Tool analogy
• Pattern: Double-buffering

• Modern: SMT … fast change among
running contexts…

9

Caltech CS184 Spring2005 -- DeHon
49

Fast Context Switch

• Provide separate sets of Registers
– trade space (more, large registers)

• easier for MDP with small # of regs
– for speed

• Don’t have to go through serialized
load/store of state

• Probably also have to assure
minimal/necessary handling code in fast
memory

Caltech CS184 Spring2005 -- DeHon
50

MDP State

Caltech CS184 Spring2005 -- DeHon
51

Message Dispatch

• Incoming message queued by priority
• If higher priority than running (and

interrupts enabled), will start running
– few cycles to switch to “create” new task

• Terminated with suspend instruction
– removes message from input queue

Caltech CS184 Spring2005 -- DeHon
52

Message Dispatch

• Idle MPD start running message after 3
cycles
– set instruction pointer
– create new message segment
– A3 is message pointer

Caltech CS184 Spring2005 -- DeHon
53

Message Handler: CALL

• MOVE [1,A3],R0 ; get method ID
• XLATE R0,A0 ; translate to address
• LDIP INITIAL_IP ; branch w/in seg

Caltech CS184 Spring2005 -- DeHon
54

Translation

• XLATE
– associative lookup
– cache/TLB/mapping primitive

• ENTER
– Used to place an entry in associative table
– may evict entry

• PROBE

10

Caltech CS184 Spring2005 -- DeHon
55

Translation

• XLATE used to map global ids to local
memory

• could be used to map processes to
processors?

Caltech CS184 Spring2005 -- DeHon
56

Synchronization

• Future tags on data
– [we’ll talk about futures in the future]

Caltech CS184 Spring2005 -- DeHon
57

Example

• Combining Tree
– Each node in tree collects up results from

its children
– Combines results (e.g. add)
– sends combined result to parent

• Used to collect results of distributed
computation

Caltech CS184 Spring2005 -- DeHon
58

Sample code: Combining Tree

COMBINE:
• MOVE [1,A3],COMB
• MOVE [2,A3], R1
• ADD R1,COMB.v,R1
• MOVE R1,COMB.v
• MOVE COMB.cnt,R2
• ADD R2,-1,R2
• MOVE R2,COMB.cnt
• BNZ R2, DONE

• MOVE HEADER,R0
• SEND2 COMB.pnode,R0
• SEND2E COMB.paddr,R1
DONE:
• suspend

Caltech CS184 Spring2005 -- DeHon
59

MDP Area

Size/tech
Of 80386

1.2μm
CMOS

Caltech CS184 Spring2005 -- DeHon
60

MDP Area

• Memory ~50%
• Processor ~33%
• Net ~10%

11

Caltech CS184 Spring2005 -- DeHon
61

J-Machine

Caltech CS184 Spring2005 -- DeHon
62

Performance

• Base communication: 1μs node to node
• Empty ping: 3-7μs round trip

– depends on distance
– 43 cycles round trip for node pinging self

• MDP 12.5 MIPs
– 2 MIPs when fetching instructions from

external memory

Caltech CS184 Spring2005 -- DeHon
63

Performance Results

Note:
all relative to
MDP;
not show
slowdown
to parallel code
and MDP. [Noakes,

Wallach
Dally
ISCA’93]

Caltech CS184 Spring2005 -- DeHon
64

Time Decomposition

[Noakes,
Wallach
Dally
ISCA’93]

Caltech CS184 Spring2005 -- DeHon
65

Other Lessons

• “Mechanisms” important for
uniprocessor performance important
here as well
– hardware memory hierarchy management

• caching, TLB
– floating point hardware
– large register set

Caltech CS184 Spring2005 -- DeHon
66

Observation

• Anything with a different programming
model is hard to sell

• …especially if some component of your
machine is worse than conventional
alternatives
– communication in Cosmic Cube
– scalar (esp. FP) performance in J-Machine

12

Caltech CS184 Spring2005 -- DeHon
67

Modern Design

• Doesn’t need completely custom ISA
– (at least, MDP wasn’t benefiting from)
– needed: send, suspend

• Hardware managed hierarchy
– cache, TLB

• Similar hardware for process/processor
mapping

Caltech CS184 Spring2005 -- DeHon
68

Non-Lessons

• Balance
– network overpowered for node

• 3× speed of external memory

• Network
– dimension order routing
– “efficiency” of wire utilization
– [will return to …]

Caltech CS184 Spring2005 -- DeHon
69

Follow ons...

• M-Machine (research)
– Clustered (VLIW-like) node

• Cray T3D/T3E
– Alpha’s for nodes, 3-cube packet net

• ASCII Red
• MPI
• Myrinet

Caltech CS184 Spring2005 -- DeHon
70

Big Ideas

• MP has minimal primitives
– appropriate low-level model
– too raw/primitive for user model

• Communication essential component
– can be expensive
– doing well is necessary to get good

performance (come out ahead)
– watch OS cost...

Caltech CS184 Spring2005 -- DeHon
71

Big Ideas

• Common Case
• Primitives
• Highly specialized instructions

[hardware mechanisms?] brittle
• Design pulls

– simplify processor implementation
– simplify coding

Caltech CS184 Spring2005 -- DeHon
72

Big Ideas

• Compiler: fill in gap between user and
hardware architecture
– good idea, not being exploited here

• Need different/additional primitives for
handling parallel cooperation efficiently
– communication
– cheap process virtualization

