
1

Caltech CS184 Spring2005 -- DeHon
1

CS184b:
Computer Architecture

(Abstractions and Optimizations)

Day 13: April 29, 2005
Virtual Memory and Caching

Caltech CS184 Spring2005 -- DeHon
2

Today

• Virtual Memory
– Problems

• memory size
• multitasking

– Different from caching?
– TLB
– Co-existing with caching

• Caching
– Spatial, multi-level …

Caltech CS184 Spring2005 -- DeHon
3

Processor-DRAM Gap
(latency)

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

Patterson, 1998
Caltech CS184 Spring2005 -- DeHon

4

“Memory Wall”

McKee/Computing Frontiers 2004

Caltech CS184 Spring2005 -- DeHon
5

Virtual Memory

Caltech CS184 Spring2005 -- DeHon
6

Problem 1:

• Real memory is finite
• Problems we want to run are bigger than

the real memory we may be able to afford…
– larger set of instructions / potential operations
– larger set of data

• Given a solution that runs on a big machine
– would like to have it run on smaller machines,

too
• but maybe slower / less efficiently

2

Caltech CS184 Spring2005 -- DeHon
7

Opportunity 1:

• Instructions touched < Total Instructions
• Data touched

– not uniformly accessed
– working set < total data
– locality

• temporal
• spatial

Caltech CS184 Spring2005 -- DeHon
8

Problem 2:
• Convenient to run more than one

program at a time on a computer
• Convenient/Necessary to isolate

programs from each other
– shouldn’t have to worry about another

program writing over your data
– shouldn’t have to know about what other

programs might be running
– don’t want other programs to be able to

see your data

Caltech CS184 Spring2005 -- DeHon
9

Problem 2:

• If share same address space
– where program is loaded (puts its data)

depends on other programs (running?
Loaded?) on the system

• Want abstraction
– every program sees same machine

abstraction independent of other running
programs

Caltech CS184 Spring2005 -- DeHon
10

One Solution
• Support large address space
• Use cheaper/larger media to hold

complete data
• Manage physical memory “like a cache”
• Translate large address space to smaller

physical memory
• Once do translation

– translate multiple address spaces onto real
memory

– use translation to define/limit what can touch

Caltech CS184 Spring2005 -- DeHon
11

Conventionally

• Use magnetic disk for secondary
storage

• Access time in ms
– e.g. 9ms
– 27 million cycles latency

• bandwidth ~400Mb/s
– vs. read 64b data item at GHz clock rate

• 64Gb/s

Caltech CS184 Spring2005 -- DeHon
12

Like Caching?
• Cache tags on all of Main memory?

• Disk Access Time >> Main Memory time
• Disk/DRAM >> DRAM/L1 cache

– bigger penalty for being wrong
• conflict, compulsory

• …also historical
– solution developed before widespread

caching...

3

Caltech CS184 Spring2005 -- DeHon
13

Mapping

• Basic idea
– map data in large blocks (pages)

• Amortize out cost of tags
– use memory table
– to record physical memory location for

each, mapped memory block

Caltech CS184 Spring2005 -- DeHon
14

Address Mapping

[Hennessy and Patterson 5.36e2/5.31e3]

Caltech CS184 Spring2005 -- DeHon
15

Mapping

• 32b address space
• 4KB pages
• 232/212=220=1M address mappings

• Very large translation table

Caltech CS184 Spring2005 -- DeHon
16

Translation Table

• Traditional solution
– from when 1M words >= real memory

• (but we’re also growing beyond 32b addressing)
– break down page table hierarchically
– divide 1M entries into 4*1M/4K=1K pages
– use another translation table to give location

of those 1K pages
– …multi-level page table

Caltech CS184 Spring2005 -- DeHon
17

Page Mapping

[Hennessy and Patterson 5.43e2/5.39e3]
Caltech CS184 Spring2005 -- DeHon

18

Page Mapping Semantics

• Program wants value contained at A
• pte1=top_pte[A[32:24]]
• if pte1.present

– ploc=pte1[A[23:12]]
– if ploc.present

• Aphys=ploc<<12 + (A [11:0])
• Give program value at Aphys

– else … load page
• else … load pte

4

Caltech CS184 Spring2005 -- DeHon
19

Early VM Machine

• Did something close to this...

Caltech CS184 Spring2005 -- DeHon
20

Modern Machines

• Keep hierarchical page table
• Optimize with lightweight hardware assist
• Translation Lookaside Buffer (TLB)

– Small associative memory
– maps virtual address to physical
– in series/parallel with every access
– faults to software on miss
– software uses page tables to service fault

Caltech CS184 Spring2005 -- DeHon
21

TLB

[Hennessy and Patterson 5.43e2/(5.36e3, close)]
Caltech CS184 Spring2005 -- DeHon

22

VM Page Replacement
• Like cache capacity problem
• Much more expensive to evict wrong thing
• Tend to use LRU replacement

– touched bit on pages (cheap in TLB)
– periodically (TLB miss? Timer interrupt) use to

update touched epoch
• Writeback (not write through)
• Dirty bit on pages, so don’t have to write

back unchanged page (also in TLB)

Caltech CS184 Spring2005 -- DeHon
23

VM (block) Page Size

• Larger than cache blocks
– reduce compulsory misses
– full mapping

• Minimize conflict misses
• Large blocks could increase capacity misses

– reduce size of page tables, TLB required to
maintain working set

Caltech CS184 Spring2005 -- DeHon
24

VM Page Size

• Modern idea: allow variety of page sizes
– “super” pages
– save space in TLBs where large pages

viable
• instruction pages

– decrease compulsory misses where large
amount of data located together

– decrease fragmentation and capacity costs
when not have locality

5

Caltech CS184 Spring2005 -- DeHon
25

VM for Multitasking

• Once we’re translating addresses
– easy step to have more than one page table
– separate page table (address space) for each

process
– code/data can live anywhere in real memory

and have consistent virtual memory address
– multiple live tasks may map data to same VM

address and not conflict
• independent mappings

Caltech CS184 Spring2005 -- DeHon
26

Multitasking Page Tables
Real Memory

Task 1
Page Table

Disk

Task 2

Task 3

Caltech CS184 Spring2005 -- DeHon
27

VM Protection/Isolation

• If a process cannot map an address
– real memory
– memory stored on disk

• and a process cannot change it page-
table
– and cannot bypass memory system to

access physical memory...
• the process has no way of getting

access to a memory location
Caltech CS184 Spring2005 -- DeHon

28

Elements of Protection
• Processor runs in (at least) two modes

of operation
– user
– privileged / kernel

• Bit in processor status indicates mode
• Certain operations only available in

privileged mode
– e.g. updating TLB, PTEs, accessing certain

devices

Caltech CS184 Spring2005 -- DeHon
29

System Services

• Provided by privileged software
– e.g. page fault handler, TLB miss handler,

memory allocation, io, program loading
• System calls/traps from user mode to

privileged mode
– …already seen trap handling requirements...

• Attempts to use privileged instructions
(operations) in user mode generate faults

Caltech CS184 Spring2005 -- DeHon
30

System Services

• Allows us to contain behavior of
program
– limit what it can do
– isolate tasks from each other

• Provide more powerful operations in a
carefully controlled way
– including operations for bootstrapping,

shared resource usage

6

Caltech CS184 Spring2005 -- DeHon
31

Also allow controlled sharing

• When want to share between
applications
– read only shared code

• e.g. executables, common libraries
– shared memory regions

• when programs want to communicate
• (do know about each other)

Caltech CS184 Spring2005 -- DeHon
32

Multitasking Page Tables
Real Memory

Task 1
Page Table

Disk

Task 2

Task 3
Shared page

Caltech CS184 Spring2005 -- DeHon
33

Page Permissions

• Also track permission to a page in PTE
and TLB
– read
– write

• support read-only pages
• pages read by some tasks, written by one

Caltech CS184 Spring2005 -- DeHon
34

TLB

[Hennessy and Patterson 5.43e2]

Caltech CS184 Spring2005 -- DeHon
35

Page Mapping Semantics
• Program wants value contained at A
• pte1=top_pte[A[32:24]]
• if pte1.present

– ploc=pte1[A[23:12]]
– if ploc.present and ploc.read

• Aphys=ploc<<12 + (A [11:0])
• Give program value at Aphys

– else … load page
• else … load pte

Caltech CS184 Spring2005 -- DeHon
36

VM and Caching?

• Should cache be virtually or physically
tagged?
– Tasks speaks virtual addresses
– virtual addresses only meaningful to a

single process

7

Caltech CS184 Spring2005 -- DeHon
37

Virtually Mapped Cache

• L1 cache access directly uses address
– don’t add latency translating before check

hit

• Must flush cache between processes?

Caltech CS184 Spring2005 -- DeHon
38

Physically Mapped Cache
• Must translate address before can

check tags
– TLB translation can occur in parallel with

cache read
• (if direct mapped part is within page offset)

– contender for critical path?
• No need to flush between tasks
• Shared code/data not require

flush/reload between tasks
• Caches big enough, keep state in cache

between tasks

Caltech CS184 Spring2005 -- DeHon
39

Virtually Mapped

• Mitigate against flushing
– also tagging with process id
– processor (system?) must keep track of

process id requesting memory access
• Still not able to share data if mapped

differently
– may result in aliasing problems

• (same physical address, different virtual
addresses in different processes)

Caltech CS184 Spring2005 -- DeHon
40

Virtually Addressed Caches

[Hennessy and Patterson 5.26]

Caltech CS184 Spring2005 -- DeHon
41

Spatial Locality

Caltech CS184 Spring2005 -- DeHon
42

Spatial Locality
• Higher likelihood of referencing nearby

objects
– instructions

• sequential instructions
• in same procedure (procedure close together)
• in same loop (loop body contiguous)

– data
• other items in same aggregate
• other fields of struct or object
• other elements in array
• same stack frame

8

Caltech CS184 Spring2005 -- DeHon
43

Exploiting Spatial Locality

• Fetch nearby objects
• Exploit

– high-bandwidth sequential access (DRAM)
– wide data access (memory system)

• To bring in data around memory
reference

Caltech CS184 Spring2005 -- DeHon
44

Blocking

• Manifestation: Blocking / Cache lines
• Cache line bigger than single word
• Fill cache line on miss

• Size b-word cache line
– sequential access, miss only 1 in b

references

Caltech CS184 Spring2005 -- DeHon
45

Blocking
• Benefit

– less miss on sequential/local access
– amortize cache tag overhead

• (share tag across b words)

• Costs
– more fetch bandwidth consumed (if not use)
– more conflicts

• (maybe between non-active words in cache line)
– maybe added latency to target data in cache

line
Caltech CS184 Spring2005 -- DeHon

46

Block Size

[Hennessy and Patterson 5.11e2/5.16e3]

Caltech CS184 Spring2005 -- DeHon
47

Optimizing Blocking

• Separate valid/dirty bit per word
– don’t have to load all at once
– writeback only changed

• Critical word first
– start fetch at missed/stalling word
– then fill in rest of words in block
– use valid bits deal with those not present

Caltech CS184 Spring2005 -- DeHon
48

Multi-level Cache

9

Caltech CS184 Spring2005 -- DeHon
49

Cache Numbers
• No Cache

– CPI=Base+0.3*100=Base+30

• Cache at CPU Cycle (10% miss)
– CPI=Base+0.3*0.1*100=Base +3

• Cache at CPU Cycle (1% miss)
– CPI=Base+0.3*0.01*100=Base +0.3

300ps
Cycle
30ns
Main Mem.

From last time

Caltech CS184 Spring2005 -- DeHon
50

Absolute Miss Rates

[Hennessy and Patterson 5.10e2]

Caltech CS184 Spring2005 -- DeHon
51

Implication (Cache Numbers)

• To get 1% miss rate?
– 64KB-256KB cache
– not likely to support multi GHz CPU rate

• More modest
– 4KB-8KB
– 7% miss rate

• 100x performance gap cannot really be
covered by single level of cache

Caltech CS184 Spring2005 -- DeHon
52

…do it again...
• If something works once,

– try to do it again

• Put second (another) cache between
CPU cache and main memory
– larger than fast cache
– hold more … less misses
– smaller than main memory
– faster than main memory

Caltech CS184 Spring2005 -- DeHon
53

Multi-level Caching

• First cache: Level 1 (L1)
• Second cache: Level 2 (L2)
• CPI = Base CPI

+Refs/Instr (L1 Miss Rate)(L2 Latency) +
+Ref/Instr (L2 Miss Rate)(Memory Latency)

Caltech CS184 Spring2005 -- DeHon
54

Multi-Level Numbers

• L1, 300ps, 4KB, 10% miss
• L2, 3ns, 128KB, 1% miss
• Main, 30ns
• L1 only CPI=Base+0.3*0.1*100=Base +3
• L2 only CPI=Base+0.3*(0.99*9+0.01*90)

=Base+2.9
• L1/L2=Base+(0.3*0.1*9 + 0.3*0.01*90)

=Base+0.54

10

Caltech CS184 Spring2005 -- DeHon
55

Numbers

• Maybe could use L3?
– Hypothesize: L3, 10ns, 1MB, 0.2%

• L1/L2/L3=Base+(0.3*(0.1*9 +
0.01*32+0.002*67)
=Base+0.27+0.096+0.040 =Base+0.41

• Compare Base+0.54 for L1/L2….

Caltech CS184 Spring2005 -- DeHon
56

Rate Note
• Previous slides:

– “L2 miss rate” = miss of L2
• all access; not just ones which miss L1

– If talk about miss rate wrt only L2 accesses
• higher since filter out locality from L1

• H&P: global miss rate
• Local miss rate: misses from accesses

seen in L2
• Global miss rate

– L1 miss rate × L2 local miss rate

Caltech CS184 Spring2005 -- DeHon
57

Segregation

Caltech CS184 Spring2005 -- DeHon
58

I-Cache/D-Cache

• Processor needs one (or several)
instruction words per cycle

• In addition to the data accesses
– Instr/Ref*Instr Issue

• Increase bandwidth with separate
memory blocks (caches)

Caltech CS184 Spring2005 -- DeHon
59

I-Cache/D-Cache

• Also different behavior
– more locality in I-cache
– afford less associativity in I-cache?
– Make I-cache wide for multi-instruction

fetch
– no writes to I-cache

• Moderately easy to have multiple
memories
– know which data where

Caltech CS184 Spring2005 -- DeHon
60

By Levels?

• L1
– need bandwidth
– typically split (contemporary)

• L2
– hopefully bandwidth reduced by L1
– typically unified

11

Caltech CS184 Spring2005 -- DeHon
61

Non-blocking

Caltech CS184 Spring2005 -- DeHon
62

How disruptive is a Miss?

• With
– multiple issue
– a reference every 3-4 instructions

• memory references 1+ times per cycle
• Miss means multiple (8,20,100?) cycles

to service
• Each miss could holds up 10’s to 100’s

of instructions...

Caltech CS184 Spring2005 -- DeHon
63

Minimizing Miss Disruption
• Opportunity:

– out-of-order execution
• maybe we can go on without it
• scoreboarding/tomasulo do dataflow on arrival
• go ahead and issue other memory operations

– next ref might be in L1 cache
• …while miss referencing L2, L3, etc.

– next ref might be in a different bank
• can access (start access) while waiting for bank

latency
Caltech CS184 Spring2005 -- DeHon

64

Non-Blocking Memory System
• Allow multiple, outstanding memory

references
• Need split-phase memory operations

– separate request data
– from data reply (read -- complete for write)

• Reads:
– easy, use scoreboarding, etc.

• Writes:
– need write buffer, bypass...

Caltech CS184 Spring2005 -- DeHon
65

Non-Blocking

[Hennessy and Patterson 5.22e2/5.23e3]
Caltech CS184 Spring2005 -- DeHon

66

Processor Memory Systems

[Hennessy and Patterson
5.47e2, 5.43e3 similar]

12

Caltech CS184 Spring2005 -- DeHon
67

Big Ideas
• Virtualization

– share scarce resource among many
consumers

– provide “abstraction” that own resource
• not sharing

– make small resource look like bigger resource
• as long as backed by (cheaper) memory to

manage state and abstraction

• Common Case
• Add a level of Translation

Caltech CS184 Spring2005 -- DeHon
68

Big Ideas

• Structure
– spatial locality

• Engineering
– worked once, try it again…until won’t work

