
1

Caltech CS184 Spring2005 -- DeHon
1

CS184b:
Computer Architecture

(Abstractions and Optimizations)

Day 13:  April 29, 2005
Virtual Memory and Caching

Caltech CS184 Spring2005 -- DeHon
2

Today

• Virtual Memory
– Problems

• memory size
• multitasking

– Different from caching?
– TLB
– Co-existing with caching

• Caching
– Spatial, multi-level …
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Processor-DRAM Gap 
(latency)

µProc
60%/yr.

DRAM
7%/yr.
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“Moore’s Law”

Patterson, 1998
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“Memory Wall”

McKee/Computing Frontiers 2004
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Virtual Memory
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Problem 1:

• Real memory is finite
• Problems we want to run are bigger than 

the real memory we may be able to afford…
– larger set of instructions / potential operations
– larger set of data

• Given a solution that runs on a big machine
– would like to have it run on smaller machines, 

too 
• but maybe  slower / less efficiently
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Opportunity 1:

• Instructions touched < Total Instructions
• Data touched

– not uniformly accessed
– working set < total data
– locality

• temporal
• spatial
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Problem 2:
• Convenient to run more than one 

program at a time on a computer
• Convenient/Necessary to isolate 

programs from each other
– shouldn’t have to worry about another 

program writing over your data
– shouldn’t have to know about what other 

programs might be running
– don’t want other programs to be able to 

see your data
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Problem 2:

• If share same address space
– where program is loaded (puts its data) 

depends on other programs (running? 
Loaded?) on the system

• Want abstraction
– every program sees same machine 

abstraction independent of other running 
programs
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One Solution
• Support large address space
• Use cheaper/larger media to hold 

complete data
• Manage physical memory “like a cache”
• Translate large address space to smaller 

physical memory
• Once do translation

– translate multiple address spaces onto real 
memory

– use translation to define/limit what can touch
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Conventionally

• Use magnetic disk for secondary 
storage

• Access time in ms
– e.g. 9ms
– 27 million cycles latency

• bandwidth ~400Mb/s
– vs. read 64b data item at GHz clock rate

• 64Gb/s

Caltech CS184 Spring2005 -- DeHon
12

Like Caching?
• Cache tags on all of Main memory?

• Disk Access Time >> Main Memory time
• Disk/DRAM >> DRAM/L1 cache

– bigger penalty for being wrong
• conflict, compulsory

• …also historical
– solution developed before widespread 

caching...
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Mapping

• Basic idea
– map data in large blocks (pages)

• Amortize out cost of tags
– use memory table
– to record physical memory location for 

each, mapped memory block
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Address Mapping

[Hennessy and Patterson 5.36e2/5.31e3]
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Mapping

• 32b address space
• 4KB pages
• 232/212=220=1M address mappings

• Very large translation table
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Translation Table

• Traditional solution
– from when 1M words >= real memory

• (but we’re also growing beyond 32b addressing)
– break down page table hierarchically
– divide 1M entries into 4*1M/4K=1K pages
– use another translation table to give location 

of those 1K pages
– …multi-level page table
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Page Mapping

[Hennessy and Patterson 5.43e2/5.39e3]
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Page Mapping Semantics

• Program wants value contained at A
• pte1=top_pte[A[32:24]]
• if pte1.present

– ploc=pte1[A[23:12]]
– if ploc.present

• Aphys=ploc<<12 + (A [11:0])
• Give program value at Aphys

– else … load page
• else … load pte
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Early VM Machine

• Did something close to this...
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Modern Machines

• Keep hierarchical page table
• Optimize with lightweight hardware assist
• Translation Lookaside Buffer (TLB)

– Small associative memory
– maps virtual address to physical
– in series/parallel with every access
– faults to software on miss
– software uses page tables to service fault
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TLB

[Hennessy and Patterson 5.43e2/(5.36e3, close)]
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VM Page Replacement
• Like cache capacity problem
• Much more expensive to evict wrong thing
• Tend to use LRU replacement

– touched bit on pages (cheap in TLB)
– periodically (TLB miss? Timer interrupt) use to 

update touched epoch
• Writeback (not write through)
• Dirty bit on pages, so don’t have to write 

back unchanged page (also in TLB)
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VM (block) Page Size

• Larger than cache blocks
– reduce compulsory misses
– full mapping

• Minimize conflict misses
• Large blocks could increase capacity misses

– reduce size of page tables, TLB required to 
maintain working set
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VM Page Size

• Modern idea: allow variety of page sizes
– “super” pages
– save space in TLBs where large pages 

viable
• instruction pages

– decrease compulsory misses where large 
amount of data located together

– decrease fragmentation and capacity costs 
when not have locality



5

Caltech CS184 Spring2005 -- DeHon
25

VM for Multitasking

• Once we’re translating addresses
– easy step to have more than one page table
– separate page table (address space) for each 

process
– code/data can live anywhere in real memory 

and have consistent virtual memory address
– multiple live tasks may map data to same VM 

address and not conflict 
• independent mappings
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Multitasking Page Tables
Real Memory

Task 1
Page Table

Disk 

Task 2

Task 3

Caltech CS184 Spring2005 -- DeHon
27

VM Protection/Isolation

• If a process cannot map an address
– real memory
– memory stored on disk

• and a process cannot change it page-
table
– and cannot bypass memory system to 

access physical memory...
• the process has no way of getting 

access to a memory location
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Elements of Protection
• Processor runs in (at least) two modes 

of operation
– user
– privileged / kernel 

• Bit in processor status indicates mode
• Certain operations only available in 

privileged mode
– e.g. updating TLB, PTEs, accessing certain 

devices
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System Services

• Provided by privileged software
– e.g. page fault handler, TLB miss handler, 

memory allocation, io, program loading
• System calls/traps from user mode to 

privileged mode
– …already seen trap handling requirements...

• Attempts to use privileged instructions 
(operations) in user mode generate faults
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System Services

• Allows us to contain behavior of 
program
– limit what it can do
– isolate tasks from each other

• Provide more powerful operations in a 
carefully controlled way
– including operations for bootstrapping, 

shared resource usage
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Also allow controlled sharing

• When want to share between 
applications
– read only shared code

• e.g. executables, common libraries
– shared memory regions

• when programs want to communicate
• (do know about each other)
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Multitasking Page Tables
Real Memory

Task 1
Page Table

Disk 

Task 2

Task 3
Shared page
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Page Permissions

• Also track permission to a page in PTE 
and TLB
– read 
– write 

• support read-only pages
• pages read by some tasks, written by one
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TLB

[Hennessy and Patterson 5.43e2]
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Page Mapping Semantics
• Program wants value contained at A
• pte1=top_pte[A[32:24]]
• if pte1.present

– ploc=pte1[A[23:12]]
– if ploc.present and ploc.read

• Aphys=ploc<<12 + (A [11:0])
• Give program value at Aphys

– else … load page
• else … load pte
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VM and Caching?

• Should cache be virtually or physically 
tagged?
– Tasks speaks virtual addresses
– virtual addresses only meaningful to a 

single process
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Virtually Mapped Cache

• L1 cache access directly uses address
– don’t add latency translating before check 

hit

• Must flush cache between processes?
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Physically Mapped Cache
• Must translate address before can 

check tags
– TLB translation can occur in parallel with 

cache read 
• (if direct mapped part is within page offset)

– contender for critical path?
• No need to flush between tasks
• Shared code/data not require 

flush/reload between tasks
• Caches big enough, keep state in cache 

between tasks
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Virtually Mapped 

• Mitigate against flushing 
– also tagging with process id
– processor (system?) must keep track of 

process id requesting memory access
• Still not able to share data if mapped 

differently 
– may result in aliasing problems

• (same physical address, different virtual 
addresses in different processes)
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Virtually Addressed Caches

[Hennessy and Patterson 5.26]
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Spatial Locality
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Spatial Locality
• Higher likelihood of referencing nearby 

objects
– instructions

• sequential instructions
• in same procedure (procedure close together)
• in same loop (loop body contiguous)

– data
• other items in same aggregate
• other fields of struct or object
• other elements in array
• same stack frame
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Exploiting Spatial Locality

• Fetch nearby objects
• Exploit 

– high-bandwidth sequential access (DRAM)
– wide data access (memory system)

• To bring in data around memory 
reference
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Blocking

• Manifestation: Blocking / Cache lines
• Cache line bigger than single word
• Fill cache line on miss

• Size b-word cache line
– sequential access, miss only 1 in b 

references
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Blocking
• Benefit

– less miss on sequential/local access
– amortize cache tag overhead

• (share tag across b words)

• Costs
– more fetch bandwidth consumed (if not use)
– more conflicts 

• (maybe between non-active words in cache line)
– maybe added latency to target data in cache 

line
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Block Size

[Hennessy and Patterson 5.11e2/5.16e3]
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Optimizing Blocking

• Separate valid/dirty bit per word
– don’t have to load all at once
– writeback only changed

• Critical word first
– start fetch at missed/stalling word
– then fill in rest of words in block
– use valid bits deal with those not present
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Multi-level Cache
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Cache Numbers
• No Cache  

– CPI=Base+0.3*100=Base+30

• Cache at CPU Cycle (10% miss)
– CPI=Base+0.3*0.1*100=Base +3

• Cache at CPU Cycle (1% miss)
– CPI=Base+0.3*0.01*100=Base +0.3

300ps
Cycle
30ns 
Main Mem.

From last time
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Absolute Miss Rates

[Hennessy and Patterson 5.10e2]
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Implication (Cache Numbers)

• To get 1% miss rate?
– 64KB-256KB cache
– not likely to support multi GHz CPU rate

• More modest
– 4KB-8KB
– 7% miss rate

• 100x performance gap cannot really be 
covered by single level of cache
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…do it again...
• If something works once,

– try to do it again

• Put second (another) cache between 
CPU cache and main memory
– larger than fast cache
– hold more … less misses
– smaller than main memory
– faster than main memory
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Multi-level Caching

• First cache: Level 1 (L1)
• Second cache: Level 2 (L2)
• CPI = Base CPI 

+Refs/Instr (L1 Miss Rate)(L2 Latency) +
+Ref/Instr (L2 Miss Rate)(Memory Latency)
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Multi-Level Numbers

• L1, 300ps, 4KB, 10% miss
• L2, 3ns, 128KB, 1% miss
• Main, 30ns
• L1 only CPI=Base+0.3*0.1*100=Base +3
• L2 only CPI=Base+0.3*(0.99*9+0.01*90) 

=Base+2.9
• L1/L2=Base+(0.3*0.1*9 + 0.3*0.01*90) 

=Base+0.54
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Numbers

• Maybe could use L3?
– Hypothesize:  L3, 10ns, 1MB, 0.2%

• L1/L2/L3=Base+(0.3*(0.1*9 + 
0.01*32+0.002*67) 
=Base+0.27+0.096+0.040 =Base+0.41

• Compare Base+0.54 for L1/L2….
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Rate Note
• Previous slides:

– “L2 miss rate” = miss of L2 
• all access; not just ones which miss L1

– If talk about miss rate wrt only L2 accesses
• higher since filter out locality from L1

• H&P: global miss rate
• Local miss rate: misses from accesses 

seen in L2
• Global miss rate 

– L1 miss rate × L2 local miss rate
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Segregation
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I-Cache/D-Cache

• Processor needs one (or several) 
instruction words per cycle

• In addition to the data accesses
– Instr/Ref*Instr Issue

• Increase bandwidth with separate 
memory blocks (caches)
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I-Cache/D-Cache

• Also different behavior
– more locality in I-cache
– afford less associativity in I-cache?
– Make I-cache wide for multi-instruction 

fetch
– no writes to I-cache 

• Moderately easy to have multiple 
memories
– know which data where
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By Levels?

• L1 
– need bandwidth
– typically split (contemporary)

• L2
– hopefully bandwidth reduced by L1
– typically unified
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Non-blocking
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How disruptive is a Miss?

• With
– multiple issue
– a reference every 3-4 instructions

• memory references 1+ times per cycle
• Miss means multiple (8,20,100?) cycles 

to service
• Each miss could holds up 10’s to 100’s 

of instructions...
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Minimizing Miss Disruption
• Opportunity:

– out-of-order execution 
• maybe we can go on without it
• scoreboarding/tomasulo do dataflow on arrival
• go ahead and issue other memory operations

– next ref might be in L1 cache
• …while miss referencing L2, L3, etc.

– next ref might be in a different bank
• can access (start access) while waiting for bank 

latency
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Non-Blocking Memory System
• Allow multiple, outstanding memory 

references
• Need split-phase memory operations

– separate request data 
– from data reply (read -- complete for write)

• Reads:
– easy, use scoreboarding, etc.

• Writes:
– need write buffer, bypass...
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Non-Blocking

[Hennessy and Patterson 5.22e2/5.23e3]
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Processor Memory Systems

[Hennessy and Patterson 
5.47e2, 5.43e3 similar]
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Big Ideas
• Virtualization

– share scarce resource among many 
consumers

– provide “abstraction” that own resource
• not sharing

– make small resource look like bigger resource
• as long as backed by (cheaper) memory to 

manage state and abstraction

• Common Case
• Add a level of Translation
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Big Ideas

• Structure
– spatial locality

• Engineering
– worked once, try it again…until won’t work


