
CS184b Spring 2005

California Institute of Technology
Department of Computer Science

Computer Architecture

CS184b, Spring 2005Assignment P5,P6,P7: Route Evaluation Monday, May 2

P5 Due: Monday, May 9, 9:00am
P6 Due: Monday, May 16, 9:00am
P7 Due: Monday, May 23, 9:00am

Goals:

• Build Routers to assess routing time and requirements

• Compare Time Multiplexed and Packet Switched Routing

Collaboration: This assignment is a group assignment. A pair of students should be
responsible for each of the two routers required.

Team: The class makes up 1 team = {hbarnor, nmehta, nachiket, mwilson}

Turnin: We have created directories: /scratch/ic/cs184/project/{p5,p6,p7}. Please
put the files requested in that directory (but keep your a master copy elsewhere, that direc-
tory is not backed up). Email mdel@cs.caltech.edu when the materials are in the directory
and ready for review.

1

CS184b Spring 2005

P5 Tasks:

1. Develop infrastructure for a Time-Multiplexed Router; Provide your code for TMRoute
including the routines FindLeastCostPath and AllocatePath.

2. Demonstrate the Time-Multiplexed Router can allocate one route between a source and
sink node in the SmallConceptNet dataset on a (ChipZ,ChipY,ChipX,Y,X)=4×4×4×4×4,
W = 2. Write out and turnin the route file for the completed route.

3. Develop infrastructure for a Packet-Switched Route Simulator; Provide:

• PacketSim

• RouteFunction

• PacketSimBlock

• PacketSimSwitchBox

4. Demonstrate the Packet-Switched Route Simulator can send a packet from one source
to one sink in the SmallConceptNet dataset on a (ChipZ,ChipY,ChipX,Y,X)=4×4×4×4×4,
W = 2. Turnin a cycle-by-cycle trace for the packet. (It is not necessary to have com-
pletely resolved all issues in the route function to assure deadlock avoidance in order
to route a single packet; this gives you freedom to resolve route function issues over
the first two weeks of the assignment.)

P6 Tasks:

1. Complete your time-multiplexed router; Provide your completed code for TMRoute.

2. Demonstrate the Time-Multiplexed Router can route the complete route task for the
100% activity SmallConceptNet on (ChipZ,ChipY,ChipX,Y,X)=4×4×4×4×4, W = 2.

Write out and turnin the route file for the compeleted route.

Report the worst-case latency for a single source-to-sink connection in the route. Re-
port the total cycles taken to completely route the task set.

3. Finish defining packet-switched routing functions and installing them into packet-
switched router; Provide final versions of:

• PacketSim

• RouteFunction

• PacketSimBlock

• PacketSimSwitchBox

4. Demonstrate the Packet-Switched Route Simulator can simulate a complete rout-
ing task 100% activity SmallConceptNet on (ChipZ,ChipY,ChipX,Y,X)=4×4×4×4×4,
W = 2. Report the worst-case latency for a single source-to-sink connection in the
route. Report the total cycles taken to completely route the task set.

2

CS184b Spring 2005

P7 Tasks:

1. Run the time-multiplexed router against the following network route tasks:

• ConceptNet full communication step for 512 FPGA design;
(ChipZ,ChipY,ChipX,Y,X)=8×8×8×Y×X – you determine Y, X, and W to fit on
a single XC2V-6000 and provide the highest performance (see below).

• ConceptNet full communication step for 64 FPGA design;
(ChipZ,ChipY,ChipX,Y,X)=1×8×8×Y×X – you determine Y, X, and W to fit on
a single XC2V-6000 and provide the highest performance (see below).

• SMVM communication for 128 FPGA design;
(ChipZ,ChipY,ChipX,Y,X)=2×8×8×Y×X – you determine Y, X, and W to fit on
a single XC2V-6000 and provide the highest performance (see below).

2. Run the packet-switched simulator against the following network route tasks:

(a) ConceptNet communication step for 512 FPGA design;
(ChipZ,ChipY,ChipX,Y,X)=8×8×8×Y×X – you determine Y, X, and W to fit
on a single XC2V-6000 and provide the highest performance (see below).

• full communication step
• 50% active communication step represented by large50.gph

• 30% active communication step represented by large30.gph

• 20% active communication step represented by large20.gph

• 10% active communication step represented by large10.gph

• 5% active communication step represented by large5.gph

(b) ConceptNet communication step for 64 FPGA design;
(ChipZ,ChipY,ChipX,Y,X)=1×8×8×Y×X – you determine Y, X, and W to fit
on a single XC2V-6000 and provide the highest performance (see below).

• full communication step
• 50% active communication step represented by large50.gph

• 30% active communication step represented by large30.gph

• 20% active communication step represented by large20.gph

• 10% active communication step represented by large10.gph

• 5% active communication step represented by large5.gph

(c) SMVM communication for 128 FPGA design;
(ChipZ,ChipY,ChipX,Y,X)=2×8×8×Y×X – you determine Y, X, and W to fit
on a single XC2V-6000 and provide the highest performance (see below).

Note, in P4 you reported feasible contours for (N, W) and (N, W, T). If these contours
are non-trivial, it may be necessary to explore multiple points to find the one that
reduces the communication steps (for both Parts 1 and 2 here). Since T is an output
of the time-multiplexed route, it may be necessary to iteratively refine your design
until you reach a consistent T . Provide graphs justifying the final (N, W, T) you select.

3. For each of the 3 cases, plot communication time versus percent activity for the packet-
switched case along with time-multiplexed communication time (flat line).

3

CS184b Spring 2005

4. For each of the three cases, identify the worst-case route latency. Generate another
plot which includes this along with total communication time.

4

CS184b Spring 2005

1 Routing Infrastructure

In this section we give an overview of some of the classes which you will build upon. This
is not an exhaustive list. See the Javadoc for the classes to see full interfaces. This section
draws your attention to some of the functions which will be most helpful in building your
router and simulator.

1.1 GraphMachine Classes

We provide a package GraphMachine which contains the following classes to support your
router and simulator designs:

• GraphMachine – the topology and graph of a full physical network containing Graph-
MachineNodes (PEs and Switches) and links between them

• GraphMachineNode – generic interface which represents physical nodes in the physical
graph, generalizing both GraphMachineBlocks and GraphMachineSwitchBoxes

• GraphMachineBlock – represents a PE and implements the GraphMachineNode inter-
face

• GraphMachineSwitchBox – represents a Switch Box and implements the GraphMachi-
neNode interface

• GraphMachineChipBorder – represents a special Switch Box to handle chip to chip
traffic

• GraphMachineWire – general directional wire that connects physical GraphMachineN-
odes

• GraphMachineWirePhase – extends GraphMachineWire, keeping track of its phase
number and dealing with the fact that it connects to wires in different phases. Basically,
this is a container to hold the state for a single phase of a time-muxed wire.

• GraphMachineWireTM – extension of GraphMachineWire to support time slots on
Time-Multiplexed wires. This is composed of GraphMachineWirePhases.

• GraphMachinePath – for static routing, this contains the path for a single source to sink
rink; use with your TMRoute to backtrace shortest paths and good for reading/writing.
You will use GraphMachinePath to store allocated routes, review routes for congestion,
rip-up routes for rerouting, and to write out a record of routes into an ASCII test file
(for final reporting and for debugging).

• GraphMachineEdge – represents a physical source-sink pair associated with a logic
edge in the base graph.

5

CS184b Spring 2005

1.2 Other Classes

The logical graph is represented as a MultiWeightGraph. MultiWeightGraph has its own
package. The logical nodes are MultiWeightGraphNodes. Each GraphMachineBlock will
contain a collection of MultiWeightGraphNodes. To find the successors of a MultiWeight-
GraphNode, you can use getNext(output,fanout). To find out the number of outputs a node
has, use getNumOutputs(). To find out how many fanouts a particular output has use get-
FanoutCount(whichoutput). Once you have the successor node, you may need to know its
destination location. You can do this using Topology.getPhysical(MultiWeightGraphNode).

1.3 Things you will want to do

• Get a list of GraphMachineEdges that need to be routed. The router/simulator needs
to have this list so it knows what it needs to route.
Topology.getEdges() will return a collection of GraphMachineEdge.

• Find the set of wires that connect out of a GraphMachineSwitchBox. The time-multiplexed
router will want to perform a search along each of the output directions.
GraphMachineSwitchBox.getOutputs() will return all the output wires. GraphMa-
chineSwitchBox.getOutputs(Wire) will return output wires reachable by the given in-
put wire.

• Find the GraphMachineNode at the other end of a Wire. When traversing between
nodes in either the router or the simulator, this is how you discover which GraphMa-
chineNode (GraphMachineSwitchBox or GraphMachineBlock) is next.
Wire.getSink() will give you the GraphMachineNode at the far end of the wire.

• Find the type and location of a node. This will tell you where you are in the network.
For the Time-Multiplexed router, you want to know if you have reached the destina-
tion. For the Packet-Switched router, you want to know where you are so you can
decide where to go next.
You must use the Java instanceof to find out if the GraphMachineNode is a Graph-
MachineBlock or a Switch. If you have the destination as an object, you can compare
this node to your destination. If you have the destination as an address, you can get the
ordinates of the address using accessors getChipZ(), getChipY(), getChipX(), getX(),
getY().

1.4 Some Highlights of GraphMachine Class Functionallity

GraphMachineWire represents a wire connecting two nodes. There is a slot (came from wire)
where you can store the predecessor wire when you are allocating a route path; this may
ease route tracing. There is also state for holding the set of paths sharing this wire. Two
edges that have the same source can often share a wire without causing congestion. During
PathFinder routing, it is useful to allow wire sharing while negotiating congestion. Important
functions you will need:

6

CS184b Spring 2005

• int getDirection() – get the direction a wire is pointing. A SwitchBox calculating delay
based on direction of inputs and outputs will need this.

• int getHist() – get the congestion history value for this wire.
• void setHist(int) – update the congestion history value for this wire.
• void addPath(GraphMachinePath p) – this allocates this wire for path p.
• void removePath(GraphMachinePath p) – this removes path p from the wire.
• int getCongestion(GraphMachinePath p) – this reports the congestion contribution of

this wire to the path if path p is added.
• void setCost(int) – annotate the wire with the cost computed by the router cost function.
• int getCost() – retreive cost of wire.
• resetTempCost() – reset temporary routing state of a wire. Does not upset occupants or

history.
• Wire.resetAllTempCosts() – reset all Wire
• int Wire.examined – a field to hold a path search id. Useful for tagging wire state so that

each wire need not be reset between each path search.

GraphMachineWireTM A multiphase wire is a wire that has separate time slots (and
hence separate path users) on each time step. This allows you to construct a multi-phased
wire, but then treat it as a normal GraphMachineWire. GraphMachineSwitchBlocks au-
tomatically take care of connecting you from a given phase to phase+delay, where delay
is the delay through the switch box. No harm will come from using a 0 phased Graph-
MachineWireTM as a normal GraphMachineWire, but that would just add area and time
overhead for no benefit, so don’t do that.

Topology A Topology represents the physical network of PEs connected by Wires and
Switches. Useful functions:

• getNodes() – returns all the nodes (MultiWeightGraphNode)
• getBlocks() – returns all the blocks in the Topology. Useful for walking over the PEs.
• getPhysical(MultiWeightGraphNode) – get the PE (Block) which holds the given logical

node.
• mapNodes(GraphMachineNodeFunction f) – applies f.execute() to all nodes in the Topol-

ogy. This is useful for performing ProcessInputs and AdvancedOutputs (see Packet-
Switched Simulator design) on all nodes in the graph.

• mapWires(GraphMachineWireFunction f) – applies f.execute() to all wires in the Topol-
ogy. This is useful for performing HistoryUpdate or clearing state (See Time-Multiplexed
Router Design) on all wires and phases in the physical graph.

• unroute() – rips up all paths on all wires.
• getEdges() – returns a collection of GraphMachineEdge for all edges in the system. Hint:

you might want to use this for Time-Multiplexed routing
• getEdges(MultiWeightGraph) – return a collection of GraphMachineEdge which are the

subset of the system specified by the input graph. Useful for specifying a subset of edges
to route. Hint: You might find this usefull for Packet Switched routing

7

CS184b Spring 2005

GraphMachinePath This represents a source→sink path in the Physical Graph Ma-
chine.

• dump() – rips up the entire path
• canShare(GraphMachinePath p) – true if this path does not conflict. false if the two

edges conflict.

You need to provide:

• AllocatePath(Wire w) – This should trace back from the last wire to the source and
allocate each wire.

You will need to extend the base GraphMachinePath class included with icppr. Set your
class name in the technology file:
(override class edu.caltech.icppr.GraphMachine.GraphMachinePath

edu.caltech.icppr.GraphMachine.MyPath)

See the Technology section (Section 10) for more information.

GraphMachineNode is the generic interface for GraphMachineBlock and GraphMa-
chineSwitchBox. It provides:

• Wire [] getOutputs() – outputs from a node.
• Wire [] getOutputs(Wire) – outputs reachable for the specified input wire. This will be a

zero length array when there are no wires or the node is not a routing component (PEs,
things that don’t directly forward messages from their inputs to their outputs).

• int getChipX() – get the X position of the chip the node is in
• int getChipY()
• int getChipZ()
• int getX() – position in the chip
• int getY()
• int getC() – for items that are replicated to make wider channels this is the specific

channel. Among other things, this is likely to show up in printed routes.

TMRouteCostFunction.cost(GraphMachineEdge,GraphMachineWire) What is the
cost of adding this edge to this wire? This is provided for use with PathFinder routing.

cost(Wire, Path, old cost)

= old cost + wire base cost (1)

+ congestion coeficient× (new occupancy of wire− 1)

This class can also be overriden in the same fashion as GraphMachinePath. See the Tech-
nology description for more information.

8

CS184b Spring 2005

2 Partition and Place Tasks to PEs

Since the number of PEs varies with T , W , and the size of your switch implementations, we
cannot provide you with a static set of pre-placed files. Instead, you will need to partition the
graphs for the target number of PEs (NPE) in your system. As noted in the tasks, you may
need to explore NPE,W ,T tradeoffs within a fixed number of FPGAs. The partition/placer
takes in a graph and a technology file and produces a placement file. When working on a
low-activity ConceptNet task set, you should still place the full graph. Among other things,
this allows you to use the same placement for all the different activity levels.

Usage:

icrun.sh GraphMachine.pp \

-O <outputdir> -t <tech file> [-s <stats file>] \

-max_imbalance \

-place <placefile> \

<netlist>

This top-level routine parses a command line and includes code to read in a technology file,
read in a graph and place the graph onto the net.

• netlist – The topology will take in a netlist in the format of a MultiWeightGraph.
MultiWeightGraph will basically read the files in the given format (*.mtx or *.gph)
and build itself. The netlist specifying the static graph is a required argument.

• placefile – output file where the placement is written (See Section 11).

• tech file – The technology file specifies the network topology and network component
properties (Section 10). It also specifies the size of the 5 dimensional array. This is
required.

• stats file – Each driver may output a statistics file.

• outputdir – -O <outputdir> specifies the output directory.

• max imbalance – The partitioner is given a number greater than 1.0 to specify the
ratio of the maximum PE load to the average PE load. A reasonable value is 1.2.

NPE = ChipZ × ChipY × ChipX × Y ×X (2)

MeanEdgesPerPE =
Total Edges

NPE

(3)

MaxEdgesPerPE = (max imbalance)×MeanEdgesPerPE (4)

9

CS184b Spring 2005

3 Drivers

We provide you with the basic drivers (top level routines, like main.c):

• gmtmr – runs time multiplexed routing
• gmprs – packet routed simulation

These top-level routines parse a command line and include code to read in a technology file,
read in a graph or placement, and invoke the appropriate router or simulator code. With
these drivers in place, you should be able to focus on writing your router/simulator.

usage:

icrun.sh GraphMachine.gmtmr -place <placefile> \

-O <outputdir> -t <tech file> [-s <stats file>]

[-phases ## [-fixed_phases <bool>]] \

-place <placefile> -route <routefile> \

<netlist>

icrun.sh GraphMachine.gmpsr -place <placefile> \

-O <outputdir> -t <tech file> [-s <stats file>] \

-messages <message netlist> \

-place <placefile> -route <routefile> \

<netlist>

Note example command lines for each driver can be found in the examples directory. See
the README and Makefile.
/cs/courses/cs184/spring2005/examples/p567

Inputs and outputs are:

• netlist – The topology will take in a netlist in the format of a MultiWeightGraph.
MultiWeightGraph will basically read the files in the given format (*.mtx or *.gph) and
build itself. The netlist specifying the static graph is a required argument. The optional
argument to gmpsr passed by -messages specifies the sparsely active subgraph.

• placefile – The full GraphMachine placement is a 5 dimensional array of logical el-
ements. The placement should specify a list of logical nodes that go into each PE
(See Section 11). The PEs are arranged as a 2d array on each GraphMachineChip.
The full system contains a 3d array of those chips. -place <placefile> specifies the
placement file.

• tech file – The technology file specifies the network topology and network component
properties (Section 10). This is required.

• stats file – Each driver may output a statistics file.

10

CS184b Spring 2005

• outputdir – -O <outputdir> specifies the output directory.

• routefile – Route drivers output a route file.

11

CS184b Spring 2005

4 How to Use ICPPR

4.1 Where to find more detailed directions

We have some useful resources for working with icppr and specific directions for working
on this project. You still should take a quick look at the howto in this document, as not
everything is covered in the web howto.

• http://www.cs.caltech.edu/research/ic/icppr/overview-summary.html

– the general icppr startup instructions. warning, might be a bit dated.

• file:///cs/courses/cs184/spring2005/assign/p5/howto_icppr.html

– a more up-to-date set of instructions for:

– getting icppr

– configuring eclipse

– creating a new project for your work

– adding your project to a cvs repository

– running from within eclipse

– running from the command line

• http://www.cs.caltech.edu/research/ic/icppr/

– general prebuilt icppr javadoc website.

4.2 Software

On the cs cluster it should be sufficient to run “eclipse”, or if that fails,
/cs/research/ic/software/eclipse. And you can ignore this section.

Eclipse is our recommended platform for working with icppr. As such you will need:

• java – a java runtime and compiler. I suggest getting a current version of Sun’s jdk
from http://java.sun.com (you will be wanting the jdk, not just the jre).

• eclipse – get it from <http://www.eclipse.org>

The other dependencies for the project are included either as part of the above or are grabbed
with the icppr tree. Java 1.5 or later is required for working with icppr. But please don’t add
any 1.5 specific syntax to the code base (1.5 classes are ok; e.g.: java.util.PriorityQueue).

12

http://www.eclipse.org

CS184b Spring 2005

4.3 Eclipse

Before getting icppr, you should set the eclipse java compiler to full java 1.4 support. If you
don’t want to make that change global, you can do so for the project, once its downloaded.
Either way, it is required to build icppr.
Also, its suggested you disable two of eclipse’s more paranoid checks so more important
warnings are buried. Set “unused imports” and “non-static access to static” to “ignore”.

4.4 Getting icppr

You should use cvs to grab icppr. From within eclipse, use the cvs repository perspective.
The host is cvs.cs.caltech.edu, and the path is /cs/research/ic/cvsroot.
For command line cvs, use:
CVS RSH=ssh and CVSROOT=:ext:cvs.cs.caltech.edu:/cs/research/ic/cvsroot

Its strongly recommended that you do this from within eclipse, as it will track things and
provide a very nice frontend for cvs. Directions are more elaborate, including screen shots
in the above mentioned howto.

4.5 Where to put your code

Create a new project. As you do so, make sure icppr is a dependency.
New classes should still be added to the package edu.caltech.icppr.GraphMachine, unless
you have a specific reason to put them elsewhere.

4.6 Overriding classes

You might wish to override certain classes. GraphMachinePath is one such class, but there
maybe more. The list should make it to the GraphMachine overview at some point.
To specify a default override, add a line to the Technology file: (override class BaseClass

YourClass), as seen earlier in the GraphMachinePath description.
This will not interfere with normal created objects. But it will be used to determine the class
when a new object is created with a factory constructor such as BaseClass.newBaseClass(args).
This should leave the code looking pretty normal.
Instead of:

GraphMachinePath p=new GraphMachinePath(source, sink);

One would use:

GraphMachinePath p=GraphMachinePath.newGraphMachinePath(source,sink);

13

CS184b Spring 2005

Just remember, this lets icppr transparently support your replacement classes. The fac-
tory will only have methods for prespecified constructors, and will not handle construc-
tors with different inputs you add to your class. Also if you’re instantiating your ob-
jects, you don’t need to use the factories. A very simple example is available upon request
(rafi@cs.caltech.edu) for those wanting to see a simple demonstration of how this works.

4.7 Running

In eclipse, there is a “run” item in the “run” menu. It will let you configure a “run”. Which
is basically a persistent environment and command line. It also has options to put the run
in the ”run” and ”debug” quick lists. If you want to make the run available to others in
your group, select “shared” (see the howto for a screen shot).

Running from the command line.

• Add your project directory to ICRUN PREPEND CLASSPATH.

• Make sure you have a java runtime available in your path

• run: icrun.sh <CLASSNAME> <ARGUMENTS> – <JVM ARGS>

Note, icrun.sh adds edu.caltech.icppr. to the specified classname, so leave that part
out.
Also, if you wish to package up your work into a jar:
cd <project dir> ; jar cf my.jar edu

If you wish to run some jobs, while continuing to develop the source, make a jar and put it
with your jobs and use that jar in the ICRUN PREPEND CLASSPATH.

cd ~rafi/eclipse/my_new_project

jar cf /tmp/silly.jar edu

cd /tmp

export ICRUN_PREPEND_CLASSPATH=/tmp/silly.jar

~/rafi/eclipse/icppr/dist/scripts/icrun.sh GraphMachine.SillyClass "say hi"

14

CS184b Spring 2005

5 Time-Multiplexed Router

You router class is: TMRoute. TMRoute will take as an argument a Topology which it will
route.

We provide a stub for TMRoute for you in:

• /cs/courses/cs184/spring2005/assign/p5/TMRoute.java

We suggest TMRoute be decomposed into the following pieces:

• Central Route Loop – loops over all point-to-point connections (GraphMachineEdge),
rerouting them until they are all successfully routed (free of congestion)

• FindLeastCostPath – subroutine that finds the least cost path for a single point-to-point
connection (GraphMachineEdge)

• AllocatePath – subroutine that installs a path once one has been found
• HistoryUpdate – routine to update the congestion history of each wire

The Topology will allow you to get a collection of edges (needed routes) using Topol-
ogy.getEdges(). Path.dump() will allow you to rip up old routes, as you may need to do
when you have congested routes. We are providing a default TMRouteCostFunction for you
to use with your FindLeastCostPath. We recommend you use a Pathfinder-based routing
algorithm [1]. Topology.mapWires() will help you implement HistoryUpdate.

15

CS184b Spring 2005

6 Packet Switched Simulator

Our suggested decompositon for the Packet Simulator includes the following classes:

• PacketSim(Topology) – top level simulator; takes a Topology as an argument.
• RouteFunction – a function that looks at position in network and destination and directs

the packet
• Packet – data structure representing a single packet
• Flit – data structure representing one network-width word of a packet
• PacketSimBlock – an extension of GraphMachineBlock (or a wrapper around it) for

packet switch simulation
• PacketSimSwitchBlox – an extension of GraphMachineSwitchBox (or a wrapper around

it) for packet switch simulation

PacketSim should include:

• Init() – clears packet queues, sets up source queues.

• boolean RouteStep(timestep) – performs one clock cycle; return value indicates if rout-
ing has completed (does any GraphMachineBlock or GraphMachineSwitchBox still
have packets in its queues); this mostly calls ProcessInputs and AdvanceOutputs.

• ProcessInputs(timestep) – map over all GraphMachineBlocks and GraphMachineSwitch-
Boxes and compute what happens on this cycle.

• boolean AdvanceOutputs(timestep) – move things to outputs; this is the second phase
of the RouteStep. Two phase architecture makes order of block/switch processing
unimportant.

PacketSimBlock and PacketSimSwitchBlocks will need to include the queues for packet sim-
ulation. PacketSimBlock simulates the source, placing packets (flits) into network and con-
suming packets from the net. PacketSimSwitchBlock moves flits from queue to queue. These
include:

• Init() – clear packet queues.

• ProcessInputs(timestep) – uses RouteFunction to make decisions; advances flits from
queue to queue; this should take care of modelling appropriate number of clock cycles
through a SwitchBox.

• boolean AdvanceOutputs(timestep) – actually moves packet to next queue as appro-
priate.

You may need to configure your switches with parameters for the number of cycles they
require to traverse. You will also need to configure the size of your queues. The Technol-
ogy File (Section 10) provides a standard way for you to pass these parameters into the
simulation.

16

CS184b Spring 2005

RouteFunction(myX, myY, myChipX, myChipY, myChipZ, targetX, targetY, targetChipX,
targetChipY, targetChipZ) – function that decides to which output a packet should be
routed. We’re suggesting this be isolated into a separate class so that it can be changed
independently of the simulator structure.

Packet includes:

• destination (header)

• payload

• timestep for entering net – the sink node can look at this to record the latency for a
packet; note that we ask you to report the maximum transit latency for a packet. In
general, packet latency is an important performance metric to quantify.

Flit represents a single, network-width word of a packet. This is what actually sits in each
queue slot and advances on each cycle.

• Packet – pointer to the packet

• which – integer indicating which flit

17

CS184b Spring 2005

7 Routing Tasks

Task sets will be given which are independent of the particular partitioning of graph nodes
to PEs. Consequently, sometimes you will need to route a message from a PE back to itself.
Assume the PE can route self messages in one cycle. Assuming the PE can process each
incoming/outgoing message in one cycle, this also accounts for the processing cost associate
with the local work on each node.

We provide you with the following route task sets:

For P5 and P6 look in: /cs/courses/cs184/spring2005/assign/p5/benchmarks

• sparse matrix: test2.mtx
• SmallConceptNet graph: matter-basic-small-lim128.gph
• SmallConceptNet 100% activity: smallnet100.task
• SmallConceptNet 10% activity: smallnet10.task

For P7 look in: /cs/courses/cs184/spring2005/assign/p7/benchmarks/

• sparse matrix: fidapm37.mtx
• StandardConceptNet graph: matter-basic-default-lim128.gph
• StandardConceptNet 100% activity: largenet100.task
• StandardConceptNet 50% activity: largenet50.task
• StandardConceptNet 30% activity: largenet30.task
• StandardConceptNet 20% activity: largenet20.task
• StandardConceptNet 10% activity: largenet10.task
• StandardConceptNet 5% activity: largenet5.task

18

CS184b Spring 2005

8 Route Functions

To avoid deadlock in the packet-switched routing case, we will need to restrict packet routing.
Note that none of this applies to Time-Multiplexed routing; since Time-Multiplexed routing
is coordinated globally, offline, the schedule can always avoid deadlock. Time-Multiplexed
routing should use whatever routes give the least time-cycles required for routing the task
set.

The simplest model would be to use dimension-ordered routing. You may choose to simply
implement dimension-ordered routing throughout to keep the routing simple. As described
above, the route function is a separate/isolated class (RouteFunction) and it should be easy
to replace the routing function with a more sophisticated one for experimentation at a later
date.

ChipZ routes also change ChipX or ChipY position, whereas it is possible to route in ChipX
or ChipY without changing the ChipZ plane. Consequently, we should route in ChipZ first.
After ChipZ is resolve, routing can proceed along ChipY, ChipX, Y, X.

Note that IOs have been placed so that continuing in the same direction requires the traversal
of only two switches. However, ports that change the Chip route dimension are not so close
and will generally be expensive. Consequently, dimension-ordered routing at the ChipZ,
ChipY, ChipX level may be the most efficient in any case. We could allow adaptivity in
switching to ChipY versus ChipX; however, since the ports are far apart on the chip, it is
unlikely we will have good feedback to decide which way to go. This suggests:

1. Exit appropriate ChipZX or ChipZY

2. We may overshoot the ChipX or ChipY target coordinate while routing in ChipZ;
nonetheless it is probably best to keep routing along the same ChipZ connection until
we achieve the desired ChipZ plane. This means we may hit the edge of machine during
an overshoot. As noted below, we are suggesting loopback edge connections that deal
with this boundary condition without further complicating the route functions.

3. Switch to ChipY

4. Switch to ChipX

5. Route West-first once enter the correct chip. (This is one place we may want to do
non-dimension ordered routing; doing West-first instead of dimension-ordered is an
option.)

The need to add special logic to deal with the edge of network condition would be troubling.
To avoid that we add a loopback connection on the otherwise unused edge connectors. This
way, we physically flip routing in the non-ChipZ dimension along which we have been routing.
For example, the IO loopback shown below illustrates how this would be wired for a chip
on the ChipX+ edge of the network. Once we hit the edge of the net, the we re-enter the
chip and line up with ChipX- routing. Since we have certainly overshot the ChipX target
coordinate, this heads us back toward the desired ChipX while continuing the ChipZ routing.

19

CS184b Spring 2005

Top Bottom

Top

Bottom

Top

Bottom

BottomTop

 Loopback
Connections

ChipY+
ChipZ−

ChipX+
ChipZ−

ChipX−
ChipZ−

ChipY−
ChipZ−

ChipX−
ChipZ+

ChipX+
ChipZ+

ChipY+
ChipZ+

ChipY−
ChipZ+

20

CS184b Spring 2005

EportsWports

EportsWports EportsWports

EportsWports

EportsWportsEportsWports

EportsWports

21

CS184b Spring 2005

9 Route Ordering

In the GMI PCE design at the end of CS184a, you noted that you could not have back-
to-back messages for the same ConceptNet graph node without forcing a stall to avoid a
WAR hazard in the pipelined memory access. Further, it may be beneficial for performance
to distribute the messages you send rather than sending sequential messages to the same
physical node or even the same output port direction on chip exit.

For the time-multiplexed router, you can schedule edge transmissions in the order you can
route them and they can be consumed without stalling. Consequently, the order of message
transmission and reception is part of what you are scheduling when computing the route.

For the packet-switched router, you need to keep the decisions simple. Most likely, you would
go through the edges for a node in order when you send out message. The one freedom you
do have is the ordering of edges within a node. You may consider a mapping pass that
reorders the edges of a graph node once you know where graph nodes have been placed on
physical PEs. You are not required to perform this reordering.

22

CS184b Spring 2005

10 Technology

10.1 Dishoom.tech

This is where you put global configuration options, such as:

• Class of the Topology

• array dimensions in terms of chips

• starting number of phases

• switch box delays

• c

/* comment */

(system_wide_tech

(topology edu.caltech.icppr.graph_machine.GraphMachine)

(dimensions

chip_x

chip_y

chip_z

)

(c ##)

(phases ##)

(message_serialization "")

(switch_box_path_delays [array of integers])

)

23

CS184b Spring 2005

10.2 Chip.tech

This is where you describe parameters that are specific to the on-chip topology

• Class of chip Topology

• array dimensions in terms of PEs on the chip

• switch box delays (will overide the global if specified here)

• c (will overide the global if specified here)

(chip_tech

(topology edu.caltech.icppr.graph_machine.GraphMachineChip)

(dimensions

x

y

)

)

We will provide technology files for the parameters stated in the problem set. But you will
need to fill in any switch box delays. Look in:

• /cs/courses/cs184/spring2005/assign/p5/tech

24

CS184b Spring 2005

11 Placement File

The placement file is a simple list of nodes and their associated location. Each line contains
a graph node name followed by six integers. These integers are the ChipZ, ChipY, ChipX, Y,
X, and slot location for the graph node. slot is simply an offset within the PE. The ordering
is not currently significant; we simply need to place each graph node in a single location in
a different slot.

The example generates the placement file:
example 8x8x8x8x8 c 2.matter-basic-small.place

25

CS184b Spring 2005

References

[1] Larry McMurchie and Carl Ebling. PathFinder: A Negotiation-Based Performance-
Driven Router for FPGAs. In Proceedings of the International Sympo-
sium on Field-Programmable Gate Arrays, pages 111–117. ACM, February
1995. <http://www.cs.washington.edu/research/projects/lis/www/papers/

postscript/mcmurchie-FPGA95.ps>.

26

http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps

	Routing Infrastructure
	GraphMachine Classes
	Other Classes
	Things you will want to do
	Some Highlights of GraphMachine Class Functionallity

	Partition and Place Tasks to PEs
	Drivers
	How to Use ICPPR
	Where to find more detailed directions
	Software
	Eclipse
	Getting icppr
	Where to put your code
	Overriding classes
	Running

	Time-Multiplexed Router
	Packet Switched Simulator
	Routing Tasks
	Route Functions
	Route Ordering
	Technology
	Dishoom.tech
	Chip.tech

	Placement File

