
1

Caltech CS184 Spring2003 -- DeHon
1

CS184b:
Computer Architecture

(Abstractions and Optimizations)

Day 9: April 25, 2003
Virtual Memory and Caching

Caltech CS184 Spring2003 -- DeHon
2

Today

• Virtual Memory
– Problems

• memory size
• multitasking

– Different from caching?
– TLB
– Co-existing with caching

• Caching
– Spatial, multi-level …

2

Caltech CS184 Spring2003 -- DeHon
3

Problem 1:

• Real memory is finite
• Problems we want to run are bigger than

the real memory we may be able to afford…
– larger set of instructions / potential operations
– larger set of data

• Given a solution that runs on a big machine
– would like to have it run on smaller machines,

too
• but maybe slower / less efficiently

Caltech CS184 Spring2003 -- DeHon
4

Opportunity 1:

• Instructions touched < Total Instructions
• Data touched

– not uniformly accessed
– working set < total data
– locality

• temporal
• spatial

3

Caltech CS184 Spring2003 -- DeHon
5

Problem 2:
• Convenient to run more than one

program at a time on a computer
• Convenient/Necessary to isolate

programs from each other
– shouldn’t have to worry about another

program writing over your data
– shouldn’t have to know about what other

programs might be running
– don’t want other programs to be able to

see your data

Caltech CS184 Spring2003 -- DeHon
6

Problem 2:

• If share same address space
– where program is loaded (puts its data)

depends on other programs (running?
Loaded?) on the system

• Want abstraction
– every program sees same machine

abstraction independent of other running
programs

4

Caltech CS184 Spring2003 -- DeHon
7

One Solution
• Support large address space
• Use cheaper/larger media to hold

complete data
• Manage physical memory “like a cache”
• Translate large address space to smaller

physical memory
• Once do translation

– translate multiple address spaces onto real
memory

– use translation to define/limit what can touch

Caltech CS184 Spring2003 -- DeHon
8

Conventionally

• Use magnetic disk for secondary
storage

• Access time in ms
– e.g. 9ms
– 9 million cycles latency

• bandwidth ~100Mb/s
– vs. read 64b data item at GHz clock rate

• 64Gb/s

5

Caltech CS184 Spring2003 -- DeHon
9

Like Caching?
• Cache tags on all of Main memory?

• Disk Access Time >> Main Memory time
• Disk/DRAM >> DRAM/L1 cache

– bigger penalty for being wrong
• conflict, compulsory

• …also historical
– solution developed before widespread

caching...

Caltech CS184 Spring2003 -- DeHon
10

Mapping

• Basic idea
– map data in large blocks (pages)
– use memory table
– to record physical memory location for

each, mapped memory block

6

Caltech CS184 Spring2003 -- DeHon
11

Address Mapping

[Hennessy and Patterson 5.36e2/5.31e3]

Caltech CS184 Spring2003 -- DeHon
12

Mapping

• 32b address space
• 4Kb pages
• 232/212=220=1M address mappings

• Very large translation table

7

Caltech CS184 Spring2003 -- DeHon
13

Translation Table

• Traditional solution
– from when 1M words >= real memory

• (but we’re also growing beyond 32b addressing)
– break down page table hierarchically
– divide 1M entries into 4*1M/4K=1K pages
– use another translation table to give location

of those 1K pages
– …multi-level page table

Caltech CS184 Spring2003 -- DeHon
14

Page Mapping

[Hennessy and Patterson 5.43e2/5.39e3]

8

Caltech CS184 Spring2003 -- DeHon
15

Page Mapping Semantics

• Program wants value contained at A
• pte1=top_pte[A[32:24]]
• if pte1.present

– ploc=pte1[A[23:12]]
– if ploc.present

• Aphys=ploc<<12 + (A [11:0])
• Give program value at Aphys

– else … load page
• else … load pte

Caltech CS184 Spring2003 -- DeHon
16

Early VM Machine

• Did something close to this...

9

Caltech CS184 Spring2003 -- DeHon
17

Modern Machines

• Keep hierarchical page table
• Optimize with lightweight hardware assist
• Translation Lookaside Buffer (TLB)

– Small associative memory
– maps virtual address to physical
– in series/parallel with every access
– faults to software on miss
– software uses page tables to service fault

Caltech CS184 Spring2003 -- DeHon
18

TLB

[Hennessy and Patterson 5.43e2/(5.36e3, close)]

10

Caltech CS184 Spring2003 -- DeHon
19

VM Page Replacement
• Like cache capacity problem
• Much more expensive to evict wrong thing
• Tend to use LRU replacement

– touched bit on pages (cheap in TLB)
– periodically (TLB miss? Timer interrupt) use to

update touched epoch
• Writeback (not write through)
• Dirty bit on pages, so don’t have to write

back unchanged page (also in TLB)

Caltech CS184 Spring2003 -- DeHon
20

VM (block) Page Size

• Larger than cache blocks
– reduce compulsory misses
– full mapping

• not increase conflict misses
• could increase capacity misses

– reduce size of page tables, TLB required to
maintain working set

11

Caltech CS184 Spring2003 -- DeHon
21

VM Page Size

• Modern idea: allow variety of page sizes
– “super” pages
– save space in TLBs where large pages

viable
• instruction pages

– decrease compulsory misses where large
amount of data located together

– decrease fragmentation and capacity costs
when not have locality

Caltech CS184 Spring2003 -- DeHon
22

VM for Multitasking

• Once we’re translating addresses
– easy step to have more than one page table
– separate page table (address space) for each

process
– code/data can live anywhere in real memory

and have consistent virtual memory address
– multiple live tasks may map data to same VM

address and not conflict
• independent mappings

12

Caltech CS184 Spring2003 -- DeHon
23

Multitasking Page Tables
Real Memory

Task 1
Page Table

Disk

Task 2

Task 3

Caltech CS184 Spring2003 -- DeHon
24

VM Protection/Isolation

• If a process cannot map an address
– real memory
– memory stored on disk

• and a process cannot change it page-
table
– and cannot bypass memory system to

access physical memory...
• the process has no way of getting

access to a memory location

13

Caltech CS184 Spring2003 -- DeHon
25

Elements of Protection
• Processor runs in (at least) two modes

of operation
– user
– privileged / kernel

• Bit in processor status indicates mode
• Certain operations only available in

privileged mode
– e.g. updating TLB, PTEs, accessing certain

devices

Caltech CS184 Spring2003 -- DeHon
26

System Services

• Provided by privileged software
– e.g. page fault handler, TLB miss handler,

memory allocation, io, program loading
• System calls/traps from user mode to

privileged mode
– …already seen trap handling requirements...

• Attempts to use privileged instructions
(operations) in user mode generate faults

14

Caltech CS184 Spring2003 -- DeHon
27

System Services

• Allows us to contain behavior of
program
– limit what it can do
– isolate tasks from each other

• Provide more powerful operations in a
carefully controlled way
– including operations for bootstrapping,

shared resource usage

Caltech CS184 Spring2003 -- DeHon
28

Also allow controlled sharing

• When want to share between
applications
– read only shared code

• e.g. executables, common libraries
– shared memory regions

• when programs want to communicate
• (do know about each other)

15

Caltech CS184 Spring2003 -- DeHon
29

Multitasking Page Tables
Real Memory

Task 1
Page Table

Disk

Task 2

Task 3
Shared page

Caltech CS184 Spring2003 -- DeHon
30

Page Permissions

• Also track permission to a page in PTE
and TLB
– read
– write

• support read-only pages
• pages read by some tasks, written by one

16

Caltech CS184 Spring2003 -- DeHon
31

TLB

[Hennessy and Patterson 5.43e2]

Caltech CS184 Spring2003 -- DeHon
32

Page Mapping Semantics
• Program wants value contained at A
• pte1=top_pte[A[32:24]]
• if pte1.present

– ploc=pte1[A[23:12]]
– if ploc.present and ploc.read

• Aphys=ploc<<12 + (A [11:0])
• Give program value at Aphys

– else … load page
• else … load pte

17

Caltech CS184 Spring2003 -- DeHon
33

VM and Caching?

• Should cache be virtually or physically
tagged?
– Tasks speaks virtual addresses
– virtual addresses only meaningful to a

single process

Caltech CS184 Spring2003 -- DeHon
34

Virtually Mapped Cache

• L1 cache access directly uses address
– don’t add latency translating before check

hit

• Must flush cache between processes?

18

Caltech CS184 Spring2003 -- DeHon
35

Physically Mapped Cache
• Must translate address before can

check tags
– TLB translation can occur in parallel with

cache read
• (if direct mapped part is within page offset)

– contender for critical path?
• No need to flush between tasks
• Shared code/data not require

flush/reload between tasks
• Caches big enough, keep state in cache

between tasks

Caltech CS184 Spring2003 -- DeHon
36

Virtually Mapped

• Mitigate against flushing
– also tagging with process id
– processor (system?) must keep track of

process id requesting memory access
• Still not able to share data if mapped

differently
– may result in aliasing problems

• (same physical address, different virtual
addresses in different processes)

19

Caltech CS184 Spring2003 -- DeHon
37

Virtually Addressed Caches

[Hennessy and Patterson 5.26]

Caltech CS184 Spring2003 -- DeHon
38

Spatial Locality

20

Caltech CS184 Spring2003 -- DeHon
39

Spatial Locality
• Higher likelihood of referencing nearby

objects
– instructions

• sequential instructions
• in same procedure (procedure close together)
• in same loop (loop body contiguous)

– data
• other items in same aggregate
• other fields of struct or object
• other elements in array
• same stack frame

Caltech CS184 Spring2003 -- DeHon
40

Exploiting Spatial Locality

• Fetch nearby objects
• Exploit

– high-bandwidth sequential access (DRAM)
– wide data access (memory system)

• To bring in data around memory
reference

21

Caltech CS184 Spring2003 -- DeHon
41

Blocking

• Manifestation: Blocking / Cache lines
• Cache line bigger than single word
• Fill cache line on miss

• Size b-word cache line
– sequential access, miss only 1 in b

references

Caltech CS184 Spring2003 -- DeHon
42

Blocking
• Benefit

– less miss on sequential/local access
– amortize cache tag overhead

• (share tag across b words)

• Costs
– more fetch bandwidth consumed (if not use)
– more conflicts

• (maybe between non-active words in cache line)
– maybe added latency to target data in cache

line

22

Caltech CS184 Spring2003 -- DeHon
43

Block Size

[Hennessy and Patterson 5.11e2/5.16e3]

Caltech CS184 Spring2003 -- DeHon
44

Optimizing Blocking

• Separate valid/dirty bit per word
– don’t have to load all at once
– writeback only changed

• Critical word first
– start fetch at missed/stalling word
– then fill in rest of words in block
– use valid bits deal with those not present

23

Caltech CS184 Spring2003 -- DeHon
45

Multi-level Cache

Caltech CS184 Spring2003 -- DeHon
46

Cache Numbers
• No Cache

– CPI=Base+0.3*100=Base+30

• Cache at CPU Cycle (10% miss)
– CPI=Base+0.3*0.1*100=Base +3

• Cache at CPU Cycle (1% miss)
– CPI=Base+0.3*0.01*100=Base +0.3

500ps
cycle

From last time

24

Caltech CS184 Spring2003 -- DeHon
47

Implication (Cache Numbers)

• To get 1% miss rate?
– 64KB-256KB cache
– not likely to support multi GHz CPU rate

• More modest
– 4KB-8KB
– 7% miss rate

• 100x performance gap cannot really be
covered by single level of cache

Caltech CS184 Spring2003 -- DeHon
48

…do it again...
• If something works once,

– try to do it again

• Put second (another) cache between
CPU cache and main memory
– larger than fast cache
– hold more … less misses
– smaller than main memory
– faster than main memory

25

Caltech CS184 Spring2003 -- DeHon
49

Multi-level Caching

• First cache: Level 1 (L1)
• Second cache: Level 2 (L2)
• CPI = Base CPI

+Refs/Instr (L1 Miss Rate)(L2 Latency) +
+Ref/Instr (L2 Miss Rate)(Memory Latency)

Caltech CS184 Spring2003 -- DeHon
50

Multi-Level Numbers

• L1, 500ps, 4KB, 10% miss
• L2, 4ns, 128KB, 1% miss
• Main, 50ns
• L1 only CPI=Base+0.3*0.1*100=Base +3
• L2 only CPI=Base+0.3*(0.99*7+0.01*92)

=Base+3.35
• L1/L2=Base+(0.3*0.1*7 + 0.01*92)

=Base+1.49

26

Caltech CS184 Spring2003 -- DeHon
51

Numbers

• Maybe could use L3?
– Hypothesize: L3, 10ns, 1MB, 0.2%

• L1/L2/L3=Base+(0.3*(0.1*7 +
0.01*12+0.002*80)
=Base+0.21+0.048+0.048 =Base+1.29

Caltech CS184 Spring2003 -- DeHon
52

Rate Note
• Previous slides:

– “L2 miss rate” = miss of L2
• all access; not just ones which miss L1

– If talk about miss rate wrt only L2 accesses
• higher since filter out locality from L1

• H&P: global miss rate
• Local miss rate: misses from accesses

seen in L2
• Global miss rate

– L1 miss rate × L2 local miss rate

27

Caltech CS184 Spring2003 -- DeHon
53

Segregation

Caltech CS184 Spring2003 -- DeHon
54

I-Cache/D-Cache

• Processor needs one (or several)
instruction words per cycle

• In addition to the data accesses
– Instr/Ref*Instr Issue

• Increase bandwidth with separate
memory blocks (caches)

28

Caltech CS184 Spring2003 -- DeHon
55

I-Cache/D-Cache

• Also different behavior
– more locality in I-cache
– afford less associativity in I-cache?
– Make I-cache wide for multi-instruction

fetch
– no writes to I-cache

• Moderately easy to have multiple
memories
– know which data where

Caltech CS184 Spring2003 -- DeHon
56

By Levels?

• L1
– need bandwidth
– typically split (contemporary)

• L2
– hopefully bandwidth reduced by L1
– typically unified

29

Caltech CS184 Spring2003 -- DeHon
57

Non-blocking

Caltech CS184 Spring2003 -- DeHon
58

How disruptive is a Miss?

• With
– multiple issue
– a reference every 3-4 instructions

• memory references 1+ times per cycle
• Miss means multiple (8,20,100?) cycles

to service
• Each miss could holds up 10’s to 100’s

of instructions...

30

Caltech CS184 Spring2003 -- DeHon
59

Minimizing Miss Disruption
• Opportunity:

– out-of-order execution
• maybe we can go on without it
• scoreboarding/tomasulo do dataflow on arrival
• go ahead and issue other memory operations

– next ref might be in L1 cache
• …while miss referencing L2, L3, etc.

– next ref might be in a different bank
• can access (start access) while waiting for bank

latency

Caltech CS184 Spring2003 -- DeHon
60

Non-Blocking Memory System
• Allow multiple, outstanding memory

references
• Need split-phase memory operations

– separate request data
– from data reply (read -- complete for write)

• Reads:
– easy, use scoreboarding, etc.

• Writes:
– need write buffer, bypass...

31

Caltech CS184 Spring2003 -- DeHon
61

Non-Blocking

[Hennessy and Patterson 5.22e2/5.23e3]

Caltech CS184 Spring2003 -- DeHon
62

Processor Memory Systems

[Hennessy and Patterson
5.47e2, 5.43e3 similar]

32

Caltech CS184 Spring2003 -- DeHon
63

Big Ideas
• Virtualization

– share scarce resource among many
consumers

– provide “abstraction” that own resource
• not sharing

– make small resource look like bigger resource
• as long as backed by (cheaper) memory to

manage state and abstraction

• Common Case
• Add a level of Translation

Caltech CS184 Spring2003 -- DeHon
64

Big Ideas

• Structure
– spatial locality

• Engineering
– worked once, try it again…until won’t work

