
1

Caltech CS184 Spring2003 -- DeHon
1

CS184b:
Computer Architecture

(Abstractions and Optimizations)

Day 8: April 23, 2003
Binary Translation

Caching Introduction

Caltech CS184 Spring2003 -- DeHon
2

Today

• Binary Translation
– Competitive/online translation
– Some numbers

• Memory System
– Issue
– Structure
– Idea
– Cache Basics

2

Caltech CS184 Spring2003 -- DeHon
3

Previously: BT Idea
• Treat ABI as a source language

– the specification
• Cross compile (translate) old ISA to new

architecture (ISA?)
• Do it below the model level

– user doesn’t need to be cognizant of
translation

• Run on simpler/cheaper/faster/newer
hardware

Caltech CS184 Spring2003 -- DeHon
4

Finding the Code

• Problem: can’t always identify statically
• Solution: wait until “execution” finds it

– delayed binding
– when branch to a segment of code,

• certainly know where it is
• and need to run it

– translate code when branch to it
• first time
• nth-time?

3

Caltech CS184 Spring2003 -- DeHon
5

Common Prospect

• Translating code is large fixed cost
– but has low incremental cost on each use
– hopefully comparable to or less than

running original on old machine
• Interpreting/Emulating code may be

faster than “compiling” it
– if the code is run once

• Which should we do?

Caltech CS184 Spring2003 -- DeHon
6

Optimization Prospects

• Translation vs. Emulation
– Ttrun = Ttrans+nTop

– Ttrns >Tem_op > Top

• If compute long enough
– nTop>>Ttrans

– → amortize out load

4

Caltech CS184 Spring2003 -- DeHon
7

“Competitive” Approach
• Run program emulated
• When a block is run “enough”, translate
• Consider

– Nthresh Temop = Ttranslate

• Always w/in factor of two of optimal
– if N<Nthresh optimal
– if N=Nthresh paid extra Ttranslate =2×optimal
– as N>>Nthresh extra time amortized out

with translation overhead
• think Ttranslate ~=2Ttranslate

Caltech CS184 Spring2003 -- DeHon
8

On-the-fly Translation Flow

• Emulate operations
• Watch frequency of use on basic blocks
• When run enough,

– translate code
– save translation

• In future, run translated code for basic
block

5

Caltech CS184 Spring2003 -- DeHon
9

Translation “Cache”

• When branch
– translate branch target to new address
– if hit, there is a translation,

• run translation
– if miss, no translation

• run in emulation (update run statistics)

Caltech CS184 Spring2003 -- DeHon
10

Alternately/Additionally

• Rewrite branch targets so address
translated code sequence
– when emulator finds branch from

translated sequence to translated
sequence

– update the target address of the branching
instruction to point to the translated code

6

Caltech CS184 Spring2003 -- DeHon
11

Self-Modifying Code

• Mark pages holding a translated branch
as read only

• Take write fault when code tries to write
to translated code

• In fault-handler, flush old page
translation

Caltech CS184 Spring2003 -- DeHon
12

Precise Exceptions
• Again, want exception visibility relative

to simple, sequential model
– …and now old instruction set model

• Imposing ordering/state preservation is
expensive

7

Caltech CS184 Spring2003 -- DeHon
13

Precise Exceptions
• Modern BT technique [hardware

support]
– “backup register” file
– commit/rollback of register file
– commit on memories
– on rollback, recompute preserving precise

state
• drop back to emulation?

• …active work on software-only solutions
– e.g. IBM/WBT’00

Caltech CS184 Spring2003 -- DeHon
14

Remarkable Convergence?

• Aries: HP PA-RISC→IA-64
– new architecture

• IBM: PowerPC→BOA
– ultra-high clock rate architecture? (2GHz)

• IBM claims 50% improvement over scaling?
• 700ps = 1.4GHz in 0.18µm

• Transmeta: x86 →Crusoe
– efficient architecture, avoid x86 baggage

8

Caltech CS184 Spring2003 -- DeHon
15

Remarkable Convergence?

• All doing dynamic translation
– frequency based

• To EPIC/VLIW architectures

Caltech CS184 Spring2003 -- DeHon
16

Academic Static
Binary Translation

[Cifuentes et. al., Binary Translation Workshop 1999]

9

Caltech CS184 Spring2003 -- DeHon
17

Academic/Static BT

[Cifuentes et. al., Binary Translation Workshop 1999]

Caltech CS184 Spring2003 -- DeHon
18

Academic/Dynamic BT

[Ung+Cifuentes, Binary Translation Workshop 2000]

10

Caltech CS184 Spring2003 -- DeHon
19

Caching

Caltech CS184 Spring2003 -- DeHon
20

Memory and Processors

• Memory used to compactly store
– state of computation
– description of computation (instructions)

• Memory access latency impacts
performance
– timing on load, store
– timing on instruction fetch

11

Caltech CS184 Spring2003 -- DeHon
21

Issues
• Need big memories:

– hold large programs (many instructions)
– hold large amounts of state

• Big memories are slow
• Memory takes up areas

– want dense memories
– densest memories not fast

• fast memories not dense

• Memory capacity needed not fit on die
– inter-die communication is slow

Caltech CS184 Spring2003 -- DeHon
22

Problem
• Desire to contain problem

– implies large memory
• Large memory

– implies slow memory access
• Programs need frequent memory

access
– e.g. 20% load operations
– fetch required for every instruction

• Memory is the performance bottleneck?
– Programs run slow?

12

Caltech CS184 Spring2003 -- DeHon
23

Opportunity

• Architecture mantra:
– exploit structure in typical problems

• What structure exists?

Caltech CS184 Spring2003 -- DeHon
24

Memory Locality
• What percentage of accesses to unique

addresses
– addresses distinct from the last N unique

addresses

[Huang+Shen, Intrinsic BW, ASPLOS 7]

13

Caltech CS184 Spring2003 -- DeHon
25

Hierarchy/Structure Summary
• “Memory Hierarchy” arises from

area/bandwidth tradeoffs
– Smaller/cheaper to store words/blocks

• (saves routing and control)
– Smaller/cheaper to handle long retiming in

larger arrays (reduce interconnect)
– High bandwidth out of registers/shallow

memories

[from CS184a]

Caltech CS184 Spring2003 -- DeHon
26

From: AlphaSort: A Cache-Sensitive Parallel External Sort
ACM SIGMOD'94 Proceedings/VLDB Journal 4(4): 603-627 (1995).

14

Caltech CS184 Spring2003 -- DeHon
27

Opportunity

• Small memories are fast
• Access to memory is not random

– temporal locality
– short and long retiming distances

• Put commonly/frequently used data
(instructions) in small memory

Caltech CS184 Spring2003 -- DeHon
28

Memory System Idea
• Don’t build single, flat memory
• Build a hierarchy of

speeds/sizes/densities
– commonly accessed data in fast/small

memory
– infrequently used data in

large/dense/cheap memory
• Goal

– achieve speed of small memory
– with density of large memory

15

Caltech CS184 Spring2003 -- DeHon
29

Hierarchy Management

• Two approaches:
– explicit data movement

• register file
• overlays

– transparent/automatic movement
• invisible to model

Caltech CS184 Spring2003 -- DeHon
30

Opportunity: Model

• Model is simple:
– read data and operate upon
– timing not visible

• Can vary timing
– common case fast (in small memory)
– all cases correct

• can answered from larger/slower memory

16

Caltech CS184 Spring2003 -- DeHon
31

Cache Basics

• Small memory (cache) holds commonly
used data

• Read goes to cache first
• If cache holds data

– return value
• Else

– get value from bulk (slow) memory
• Stall execution to hide latency

– full pipeline, scoreboarding

Caltech CS184 Spring2003 -- DeHon
32

Cache Questions

• How manage contents?
– decide what goes (is kept) in cache?

• How know what we have in cache?

• How make sure consistent ?
– between cache and bulk memory

17

Caltech CS184 Spring2003 -- DeHon
33

Cache contents
• Ideal: cache should hold the N items that

maximize the fraction of memory
references which are satisfied in the cache

• Problem:
– don’t know future
– don’t know what values will be needed in the

future
• partially limitation of model
• partially data dependent
• halting problem

– (can’t say if will execute piece of code)

Caltech CS184 Spring2003 -- DeHon
34

Cache Contents

• Look for heuristics which keep most
likely set of data in cache

• Structure: temporal locality
– high probability that recent data will be

accessed again
• Heuristic goal:

– keep the last N references in cache

18

Caltech CS184 Spring2003 -- DeHon
35

Temporal Locality Heuristic

• Move data into cache on access (load,
store)

• Remove “old” data from cache to make
space

Caltech CS184 Spring2003 -- DeHon
36

“Ideal” Locality Cache

• Stores N most recent things
– store any N things
– know which N things accessed
– know when last used

data addr Ref cycle

19

Caltech CS184 Spring2003 -- DeHon
37

“Ideal” Locality Cache

data addr Ref cycle

=
ld

data addr Ref cycle

=
ld

data addr Ref cycle

=
ld

• Match address
• If matched,

•update cycle
• Else

•drop oldest
•read from memory
•store in newly free slot

Caltech CS184 Spring2003 -- DeHon
38

Problems with “Ideal”
Locality?

• Need O(N) comparisons
• Must find oldest

– (also O(N)?)

• Expensive

data addrRef cycle

=
ld

data addrRef cycle

=
ld

data addrRef cycle

=
ld

20

Caltech CS184 Spring2003 -- DeHon
39

Relaxing “Ideal”
• Keeping usage (and comparing)

expensive
• Relax:

– Keep only a few bits on age
– Don’t bother

• pick victim randomly
• things have expected lifetime in cache
• old things more likely than new things
• if evict wrong thing, will replace
• very simple/cheap to implement

Caltech CS184 Spring2003 -- DeHon
40

Fully Associative Memory

• Store both
– address
– data

• Can store any N
addresses

• approaches ideal
of “best” N things

data addr

=

data addr

=

data addr

=

21

Caltech CS184 Spring2003 -- DeHon
41

Relaxing “Ideal”

• Comparison for every address is
expensive

• Reduce comparisons
– deterministically map address to a small

portion of memory
– Only compare addresses against that

portion

Caltech CS184 Spring2003 -- DeHon
42

Direct Mapped

• Extreme is a “direct mapped”
cache

• Memory slot is f(addr)
– usually a few low bits of address

• Go directly to address
– check if data want is there

data addr

=

data addr

data addr

data addr

Addr
high

Addr
low

hit

22

Caltech CS184 Spring2003 -- DeHon
43

Direct Mapped Cache

• Benefit
– simple
– fast

• Cost
– multiple addresses will need same slot
– conflicts mean don’t really have most

recent N things
– can have conflict between commonly used

items

Caltech CS184 Spring2003 -- DeHon
44

Set-Associative Cache

• Between extremes set-associative
• Think of M direct mapped caches
• One comparison for each cache
• Lookup in all M caches
• Compare and see if any have target

data
• Can have M things which map to same

address

23

Caltech CS184 Spring2003 -- DeHon
45

Two-Way Set Associative

data addr

=

data addr

data addr

data addr

data addr

=

data addr

data addr

data addr

Low address bits

High
address
bits

Caltech CS184 Spring2003 -- DeHon
46

Two-way Set Associative

[Hennessy and Patterson 5.8e2]

24

Caltech CS184 Spring2003 -- DeHon
47

Set Associative

• More expensive that direct mapped
• Can decide expense
• Slower than direct mapped

– have to mux in correct answer

• Can better approximate holding N most
recently/frequently used things

Caltech CS184 Spring2003 -- DeHon
48

Classify Misses

• Compulsory
– first refernce
– (any cache would have)

• Capacity
– misses due to size
– (fully associative would have)

• Conflict
– miss because of limit places to put

25

Caltech CS184 Spring2003 -- DeHon
49

Set Associativity

[Hennessy and Patterson 5.10e2]

Caltech CS184 Spring2003 -- DeHon
50

Absolute Miss Rates

[Hennessy and Patterson 5.10e2]

26

Caltech CS184 Spring2003 -- DeHon
51

Policy on Writes

• Keep memory consistent at all times?
– Or cache+memory holds values?

• Write through:
– all writes go to memory and cache

• Write back:
– writes go to cache
– update memory only on eviction

Caltech CS184 Spring2003 -- DeHon
52

Write Policy

• Write through
– easy to implement
– eviction trivial

• (just overwrite)
– every write is slow (main memory time)

• Write back
– fast (writes to cache)
– eviction slow/complicate

27

Caltech CS184 Spring2003 -- DeHon
53

Cache Equation...

• Assume hits satisfied in 1 cycle

• CPI = Base CPI + Refs/Instr (Miss
Rate)(Miss Latency)

Caltech CS184 Spring2003 -- DeHon
54

Cache Numbers
• CPI = Base CPI + Ref/Instr (Miss

Rate)(Miss Latency)
• From ch2/experience

– load-stores make up ~30% of operations
• Miss rates

– …1-10%
• Main memory latencies

– 50ns
• Cycle times

– 300-500ps … shrinking

28

Caltech CS184 Spring2003 -- DeHon
55

Cache Numbers
• No Cache

– CPI=Base+0.3*100=Base+30

• Cache at CPU Cycle (10% miss)
– CPI=Base+0.3*0.1*100=Base +3

• Cache at CPU Cycle (1% miss)
– CPI=Base+0.3*0.01*100=Base +0.3

500ps
cycle

Caltech CS184 Spring2003 -- DeHon
56

Wrapup

29

Caltech CS184 Spring2003 -- DeHon
57

Big Ideas [Binary Trans]
• Well-defined model

– High value for longevity
– Preserve semantics of model
– How implemented irrelevant

• Hoist work to earliest possible binding time
– dependencies, parallelism, renaming
– hoist ahead of execution

• ahead of heavy use
– reuse work across many uses

• Use feedback to discover common case

Caltech CS184 Spring2003 -- DeHon
58

Big Ideas

• Structure
– temporal locality

• Model
– optimization preserving model
– simple model
– sophisticated implementation
– details hidden

30

Caltech CS184 Spring2003 -- DeHon
59

Big Ideas

• Balance competing factors
– speed of cache vs. miss rate

• Getting best of both worlds
– multi level
– speed of small
– capacity/density of large

