
1

Caltech CS184 Spring2003 -- DeHon
1

CS184b:
Computer Architecture

(Abstractions and Optimizations)

Day 5: April 14, 2003
ILP 2

Caltech CS184 Spring2003 -- DeHon
2

Today

• ILP Limits
• Practical Issues

– Finite size issues
• Cost Scaling
• Ultrascalar

2

Caltech CS184 Spring2003 -- DeHon
3

Limit Studies
• Goal: understand how far you can go

– this case, how much ILP can find
• Remove current/artificial limits

– do full renaming, arbitrary look ahead
– perfect control prediction, memory

disambiguation
• Careful with assumptions

– can still be pessimistic
– is there another way to do it?
– Another way around the limitation?

Caltech CS184 Spring2003 -- DeHon
4

Available ILP

[Hennessy and Patterson 4.38e2/3.35e3]

3

Caltech CS184 Spring2003 -- DeHon
5

What do we achieve today?

• Pentium … < 1 instruction/cycle retired
– But low cycle time
– Time= CPI × Instructions × CycleTime

• Not seen attempts to issue more than 4
instructions/cycle
– Much less sustain retire or more than 4

Caltech CS184 Spring2003 -- DeHon
6

Limit Effects

4

Caltech CS184 Spring2003 -- DeHon
7

Superscalar

IF
Decode
Queue

EX

ALU

MPY

LD/ST

RF

RUU
Fetch
Width

Window Size

Physical
Registers

Issue
Width

Number/Types
Of Functional Units

Caltech CS184 Spring2003 -- DeHon
8

Window Size (unlimited issue)

[Hennessy and Patterson 4.39e2/3.36e3]

There’s quite a bit of
non-local parallelism.

5

Caltech CS184 Spring2003 -- DeHon
9

Window Size (Issue limited)

[64-issues Hennessy and Patterson 4.47e2/3.45e3]

Caltech CS184 Spring2003 -- DeHon
10

Operation Organization

• Consider Tree-structured calculation
– freedom in ordering
– consider:

• post-order traversal
• by levels from leaves

– where is parallelism?
– Storage cost?

6

Caltech CS184 Spring2003 -- DeHon
11

Window Size
• How many instructions forward do we

look?
– Only look at next = in-order issue

Johnson
Fig. 3.9
(32 issue
window?)

Caltech CS184 Spring2003 -- DeHon
12

Branch Prediction

[Hennessey & Patterson Fig 3.38/e3]

7

Caltech CS184 Spring2003 -- DeHon
13

Window Cost?

• No one before you in the window writes
a value you need

• Rsrci ≠ Rdsti-1; Rsrci ≠ Rdsti-2;…

• O(WS2) comparisons

Caltech CS184 Spring2003 -- DeHon
14

Cost?

• Anecdotal [Farrell, Fischer JSSC v33n5]
– DEC 20-instruction queue
– 4 instruction issue
– (80 physical registers)
– 10mm2 in 0.35µm (300Mλ2+)

• Compare:
– 300 4-LUTs (w/ interconnect)
– MIPS-X 32b CPU w/ 1KB memory = 68Mλ2

– 600 MHz = 1.6ns

8

Caltech CS184 Spring2003 -- DeHon
15

Costs?
• Both DEC and “Quantifying” (also DEC)

– appear to use a scoreboarded scheme to avoid
– accept not issue until result computed?

• “Quantifyng” suggests:
– wakeup time ∝ IW2×WS2

• but assuming quadratic wire delay in length
• (never buffer wire)

– but WS=F(IW)
– certainly faster than linear time
– A ∝ IW × WS

Caltech CS184 Spring2003 -- DeHon
16

Registers
• How many virtual registers needed?

[Hennessy and Patterson 4.43e2/3.41e3]

9

Caltech CS184 Spring2003 -- DeHon
17

Register Costs?

• First Order
– area linear in number of registers
– delay linear in number of registers

• Bank RF
– maybe sublinear delay
– at least square root number of registers

• wire delay sqrt of area

Caltech CS184 Spring2003 -- DeHon
18

RF and IW interaction

• Larger Issue (Decode)
– want to read/retire more registers per cycle
– RF ports = 3 IW [Op Rdst Rsrc1,Rsrc2]
– A ∝ ports × number
– …and number of registers = F(IW)
– A ∝ IW × F(IW)

• RF grows faster than linear

10

Caltech CS184 Spring2003 -- DeHon
19

Bypass: Control

• Control comparison
– every functional input (2 IW)
– get input from

• every pipestage (d) from issue produce to wb
• for every result producer (>IW)

• Total comparisons: d×IW2

Caltech CS184 Spring2003 -- DeHon
20

Bypass: Interconnect
• Linear layout

– bypass span functional units and RF
– physical RF grows with IW

• read/write ports
• more physical registers to support IW

– FU bypass muxes grows with IW
• Consequently

– width grows with IW
– cycle grow with IW?

11

Caltech CS184 Spring2003 -- DeHon
21

Bypass: Interconnect

• “Quantifying”
– quadratic wire delay
– (but asymptotically, we can buffer)
– largest delay component calculated

• (>1ns for IW=8) [180nm]
• IW=8 about 5-6 times IW=4

Caltech CS184 Spring2003 -- DeHon
22

Aliasing
• Do memory

operations depend
on one another?

• E.g.
A[j+3]=x*x+y;
Z=A[i-2]+A[i+2]

• Is A[i-2], A[i+2]
another name for
A[j+3]?

• E.g.
*a++;
*b+=3;
*a++;
d=*c+3;

• Are these operations
all independent?

• Or do some name
the same memory
locaiton?

12

Caltech CS184 Spring2003 -- DeHon
23

Aliasing

[Hennessey & Patterson Fig 3.43/e3]

Caltech CS184 Spring2003 -- DeHon
24

…And now for something
Completely Different

13

Caltech CS184 Spring2003 -- DeHon
25

Different Solution

• These assume Number of Regs > IW
• If IW>R, different approach…

• From Henry, Kuszmaul, et. al.
– ARVLSI’99
– SPAA’99
– ISCA’00

Caltech CS184 Spring2003 -- DeHon
26

Consider Machine

• Each FU has a full RF
• Build network between FUs

– use network to connect produce/consume
– user register names to configure

interconnect
• Signal data ready along network

14

Caltech CS184 Spring2003 -- DeHon
27

Ultrascalar: concept model

Caltech CS184 Spring2003 -- DeHon
28

Ultrascalar concept

• Linear delay
• O(1) register cost / FU
• Complete renaming at each FU

– different set of registers
– so when say complete RF at each FU,

that’s only the logical registers

15

Caltech CS184 Spring2003 -- DeHon
29

Ultrascalar: cyclic prefix

Caltech CS184 Spring2003 -- DeHon
30

Parallel Prefix
• Basic idea is one we saw with adders
• An FU will either

– produce a register (generate)
– or transmit a register (propagate)
– can do tree combining

• pair of FUs will either both propagate or will
generate

• compute function by pair in one stage
• recurse to next stage
• get log-depth tree network connecting producer

and consumer

16

Caltech CS184 Spring2003 -- DeHon
31

Ultrascalar: cyclic prefix

Caltech CS184 Spring2003 -- DeHon
32

Cyclic Prefix

• Gets delay down to log(WS)
– w/ linear layout, delay still linear

• Issue into, retire from Window in order
– serves

• rename
• shared RF
• issue
• bypass
• reorder

17

Caltech CS184 Spring2003 -- DeHon
33

Ultrascalar: layout

Register paths
not growing.

(p=0 tree!)
Wide, but constant
width

If Memory width <√n
area goes as n

wire goes as √n

Caltech CS184 Spring2003 -- DeHon
34

Ultrascalar: asymptotics
• Assume M(n)<O(√n)

– Area ~ n×R2

– Delay ~ (√n)×R
• Claim can do

– Area ~ n×R
– Delay ~ √(n×R)

• If memory grows faster, will dominate
interconnect growth, hence area and delay
– get extra term for memory growth (like Rent’s

Rule)

18

Caltech CS184 Spring2003 -- DeHon
35

UltraScalar:

• 0.25 µm
• 128-window, 32 logical regs
• 64b ops ?
• 8 instruction fetch
• delays <2ns [0.25µm]

– commit, wakeup, schedule
– wire delay dominate logic

• area ~2Gλ2 (not include datapath)

Caltech CS184 Spring2003 -- DeHon
36

Solution for:

• Object/binary compatibility is paramount
• Performance is King
• Recompilation not an option
• Cost (area, energy) is no object

19

Caltech CS184 Spring2003 -- DeHon
37

Friday

• …an alternative way to exploit ILP
• rely on compiler and feedback

• [reminder: no lecture Wednesday]

Caltech CS184 Spring2003 -- DeHon
38

(Semi?) Big Ideas
• Good to look at

– Extremes (what can this possibly do?)
– Sensitivity (how important is this to…)

• Balance
• Size Matters
• Interconnect delay dominate
• As parameters grow

– watch tradeoffs
– widely different solutions prevail in different points in

space (different asymptotes)

