
1

Caltech CS184 Spring2003 -- DeHon
1

CS184b:
Computer Architecture

(Abstractions and Optimizations)

Day 2: April 2, 2003
Instruction Set Architecture

Caltech CS184 Spring2003 -- DeHon
2

Today

• Datapath review
• H&P view on ISA
• Questions
• Themes
• Compilers
• RISC

2

Caltech CS184 Spring2003 -- DeHon
3

RISC?

• What does RISC mean?

Caltech CS184 Spring2003 -- DeHon
4

Terminology

• Primitive Instruction (pinst)
– Collection of bits which tell a single bit-

processing element what to do
– Includes:

• select compute operation
• input sources in space

– (interconnect)
• input sources in time

– (retiming)

Compute

0000 00 010 11 0110
net0 add mem slot#6

3

Caltech CS184 Spring2003 -- DeHon
5

Instructions

• Distinguishing feature of programmable
architectures?
– Instructions -- bits which tell the device

how to behave

Compute

0000 00 010 11 0110
net0 add mem slot#6

Caltech CS184 Spring2003 -- DeHon
6

Single ALU Datapath

4

Caltech CS184 Spring2003 -- DeHon
7

With Branch and Indirect
Instr: ALUOP Bsel Write Bsrc Asrc DST Baddr

CS18
4a

Day
 5

Caltech CS184 Spring2003 -- DeHon
8

ISA

• Model based around Sequential
Instruction Execution

• Visible-Machine-State × Instruction
New Visible-Machine-State

• New Visible-Machine-State identifies
next instruction
– PC PC+1 or PC branch-target

5

Caltech CS184 Spring2003 -- DeHon
9

Machine State: Initial

• Counter: 0
• Instruction Memory:

000: 0000 1 001 001 010
001: 0000 1 000 010 011
010: 1000 1 011 100 111

• Data Memory:
000: A
001: B
010: ?
011: ?
100: 00001111
101: ?
110: ?
111: ?

CS18
4a

Day
 5

Caltech CS184 Spring2003 -- DeHon
10

ISA

• Visible Machine State
– Registers (including PC)
– Memory

• Instructions
– ADD R1, R2, R3
– LD R3, R4
– BNE R4, R2, loop

6

Caltech CS184 Spring2003 -- DeHon
11

Datapath

[Datapath from PH (Fig. 5.1)]

Caltech CS184 Spring2003 -- DeHon
12

Instructions

• Primitive operations for constructing
(describing) a computation

• Need to do?
– Interconnect (space and time)
– Compute (intersect bits)
– Control (select operations to run)

7

Caltech CS184 Spring2003 -- DeHon
13

Detail Datapath

[Datapath from PH (Fig. 5.13)]

Caltech CS184 Spring2003 -- DeHon
14

uCoded / Decoded

• uCoded
– Bits directly control datapath
– Horizontal vs. Vertical
– Not abstract from implementation

• Decoded
– more compressed
– only support most common operations
– abstract from implementation
– time/area to decode to datapath control signals

8

Caltech CS184 Spring2003 -- DeHon
15

Detail Datapath

[Datapath from PH (Fig. 5.13)]

Caltech CS184 Spring2003 -- DeHon
16

H&P View
• ISA design done?
• Not many opportunities to completely

redefine
• Many things mostly settled

– at least until big technology perturbations arrive
• Implementation (uArch) is where most of

the action is
• Andre: maybe we’ve found a nice local

minima...

9

Caltech CS184 Spring2003 -- DeHon
17

H&P Issues

• Registers/stack/accumulator
– # operands, memory ops in instruction

• Addressing Modes
• Operations
• Control flow
• Primitive Data types
• Encoding

Caltech CS184 Spring2003 -- DeHon
18

Register/stack/accumulator

• Driven largely by cost model
– ports into memory
– latency of register versus memory
– instruction encoding (bits to specify)

• Recall Assignment 3: Instructions #4

10

Caltech CS184 Spring2003 -- DeHon
19

Register/stack/accumulator

• Today: Load-Store, General Register arch.
• Registers more freedom of addressing than

stack
• Load into register, then operate

– Separate op, not much slower than memory
addressing mode

– usually use more than once (net reduction)

Caltech CS184 Spring2003 -- DeHon
20

Addressing Modes
• Minimal:

– Immediate #3
– Register R1
– register indirect (R1)

• Others:
– displacement
– indirect (double derference)
– auto increment/decrement (p[x++]=y)
– scaled

11

Caltech CS184 Spring2003 -- DeHon
21

Addressing Modes

• More capable
– less instructions
– potentially longer instructions

• bits and cycle time
– many operations (complicate atomicity of

instructions)
• Add (R2)+,(R3)+,(R4)+

Caltech CS184 Spring2003 -- DeHon
22

Address Space Quote

• The Virtual Address eXtension of the PDP-11
architecture . . . provides a virtual address of
about 4.3 gigabytes which, even given the
rapid improvement of memory technology,
should be adequate far into the future.

• William Strecker, “VAX-11/780—A Virtual
address Extension to the PDP-11 Family,”
AFIPS Proc., National Computer Conference,
1978

12

Caltech CS184 Spring2003 -- DeHon
23

Operations
• ALU/Arithmetic

– add, sub, or, and, xor
– compare

• Interconnect
– move registers
– load, store

• Control
– jump
– conditional branch
– procedure call/return

Caltech CS184 Spring2003 -- DeHon
24

Operations: ALU

• Small set of SIMD operations
• Covers very small fraction of the space

of all w×w→w

13

Caltech CS184 Spring2003 -- DeHon
25

Operations: Branching

• Models:
– ops set condition codes, branch on

condition codes
• Extra state

– compare result placed in register; branch
on register zero or one

– comparison part of branch
• May affect critical path for branch resolution

Caltech CS184 Spring2003 -- DeHon
26

Operations: Procedure
call/return

• ? Save registers?
• Update PC

– call target
– return address

• Change stack and frame pointers
– store old
– install new

14

Caltech CS184 Spring2003 -- DeHon
27

Operations: Procedure
call/return

• Question: How much should instruction
do?

• Lesson: High variance in work needs to be
done
– which registers need to save
– best way to transfer arguments to procedures
– better to expose primitives to the compiler and

let it specialize the set of operations to the
particular call

Caltech CS184 Spring2003 -- DeHon
28

Data Types

• Powers of two from bytes to double
words?
– 8, 16, 32, 64
– (very implementation driven decision)

• Floating Point types
• Are pointers integers?
• Alignment requirements

15

Caltech CS184 Spring2003 -- DeHon
29

Encoding

• Variable vs. Fixed
• How complex is the decoding?

– Fields in the same place…or have to be
routed/muxed?

– Sequential requirements in decode?
• E.g. must decode previous byte to know what

to do with next byte?

Caltech CS184 Spring2003 -- DeHon
30

Detail Datapath

[Datapath from PH (Fig. 5.13)]

16

Caltech CS184 Spring2003 -- DeHon
31

Encoding: RISC/Modern

[DLX Instruction Format from HP2nd ed. (Fig. 2.21)]

Caltech CS184 Spring2003 -- DeHon
32

Operation Complexity

• Contradiction?
– Providing primitives
– including floating point ops

17

Caltech CS184 Spring2003 -- DeHon
33

Local Minima?

• Self-Fulfilling?
– How would we quantitatively validate need

for a new operation?
– [cue: bridge story]
– This is what we use as primitives
– Funny, we don’t find a need for other

primitives…

Caltech CS184 Spring2003 -- DeHon
34

Themes

• Common case fast
• Provide primitives (building blocks)
• Let compiler specialize to particular

operation
• Make decode/operation simple so

implementation is fast

18

Caltech CS184 Spring2003 -- DeHon
35

Compilers

• 1960→1990 shift
– increasing capability and sophistication of

compilers
– e.g.

• inter-procedural optimization
• register assignment (register usage)
• strength reduction
• dataflow analysis and instruction reordering
• (some progress) alias analysis

Caltech CS184 Spring2003 -- DeHon
36

Compilers
• Gap between programmer and Architecture
• Increasingly bridged by compiler
• Less need to make assembly language

human programmable
• More opportunity for compiler to specialize,

partial evaluate
– (do stuff at compile time to reduce runtime)

• RISC: “Relegate Interesting Stuff to Compiler”

19

Caltech CS184 Spring2003 -- DeHon
37

Implementation Significance

• André Agree: Implementation issues
are significant in the design of ISA

• Many of these issues are more
interesting when we discuss in light of
implementation issues

Caltech CS184 Spring2003 -- DeHon
38

ISA Driven by

1. Implementation costs
2. Compiler technology
3. Application structure

• Can’t do good architecture in isolation
from any of these issues.

20

Caltech CS184 Spring2003 -- DeHon
39

RISC?

Caltech CS184 Spring2003 -- DeHon
40

VAX Instructions

• Vary in length 1 to 53 bytes
• Some very complex

– Powerful call routines
– Polynomial evaluate (polyf)
– Calculate CRC (crc)

21

Caltech CS184 Spring2003 -- DeHon
41

VAX / MIPS procedure

http://jbsim.cs.pku.edu.cn/users/chengxu/Org_web_ext/PDF_FILES/webext3_vax.pdf

Caltech CS184 Spring2003 -- DeHon
42

RISC

• Reduced Instruction Set Computers
• Idea:

– Provide/expose minimal primitives
– Make sure primitives fast
– Compose primitives to build functionality
– Provide orthogonal instructions

22

Caltech CS184 Spring2003 -- DeHon
43

RISC Equation

• Time= CPI × Instructions × CycleTime
• CISC:

– Minimize: Instructions
– Result in High CPI
– Maybe High CycleTime

• RISC:
– Target single-cycle primitives (CPI~1)
– Instruction Count increases
– Simple encoding, ops reduced Cycle Time

Caltech CS184 Spring2003 -- DeHon
44

VAX Data

[Emer/Clark, ISCA 1984]

23

Caltech CS184 Spring2003 -- DeHon
45

RISC Enabler 1

• “large”, fast On-Chip SRAM
– Large enough to hold kernel exploded in RISC Ops ~

1--10K 32b words?
• Previous machines:

– Off-chip memory bandwidth bottleneck
– Fetch single instruction from off chip
– Execute large number of microinstructions from on-

chip ROM
• ROM smaller than SRAM

• Small/minimal machine make room for cache

Caltech CS184 Spring2003 -- DeHon
46

RISC Enable 2

• High Level Programming
– Bridge semantic gap by compiler
– As opposed to providing powerful building

blocks to assembly language programmer

24

Caltech CS184 Spring2003 -- DeHon
47

Fit Problem

• “A great dal depends on being able to fit
an entire CPU design on a single chip."

• "RISC computers benefit from being
realizable at an earlier date."

Caltech CS184 Spring2003 -- DeHon
48

Common Case

• "wherever there is a system function that is
expensive or slow in all its generality, but
where software can recognize a frequently
occurring degenerate case (or can move the
entire function from runtime to compile time)
that function is moved from hardware to
software, resulting in lower cost and improved
performance." – 801 paper

25

Caltech CS184 Spring2003 -- DeHon
49

Measurement Good

• Don’t assume you know what’s going on
– measure

• Tune your intuition
• "Boy, you ruin all our fun -- you have

data.” – DEC designers in response to a
detailed quantitative study [Emer/Clark
Retrospective on 11/780 performance
characterization]

Caltech CS184 Spring2003 -- DeHon
50

VAX/RISC Compare

[Bhandarkar/Clark ASPLOS 1991]

26

Caltech CS184 Spring2003 -- DeHon
51

VAX/RISC Compare

[Bhandarkar/Clark ASPLOS 1991]

Caltech CS184 Spring2003 -- DeHon
52

VAX

• Smoking gun?:
– 3-operand instructions
– One cycle per operand field
– If field a mem-op, wash with ld/st in RISC
– If register-op, costs more

• …long way to supporting gap…

27

Caltech CS184 Spring2003 -- DeHon
53

ISA Growth

• Can add instructions (upward
compatibility)

• Do we ever get to remove any?

Caltech CS184 Spring2003 -- DeHon
54

RISC

• Everyone believe RISC
– X86 only one left
– ...and it’s a RISC core…

• …but do they understand it?
– Today’s processors pretty complicated
– Who’s managing instruction scheduling?
– What mean to FPGAs?

28

Caltech CS184 Spring2003 -- DeHon
55

Big Ideas
• Common Case

– Measure to verify/know what it is!
• Primitives
• Highly specialized instructions brittle
• Design pulls

– simplify processor implementation
– simplify coding

• Orthogonallity (limit special cases)
• Compiler: fill in gap between user and

hardware architecture

