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CS184b:
Computer Architecture

(Abstractions and Optimizations)

Day 1:  March 31, 2003
Architecture Intro
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Today

• This Quarter
• What is Architecture?

– Why?
• Project Discussion



2

Caltech CS184 Spring2003 -- DeHon
3

CS184 Sequence

• A - structure and organization
– raw components, building blocks
– design space

• B – architectural abstractions and 
optimization 
– emphasis on abstractions and 

optimizations including quantification
– single and multiple threads
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Topics this Quarter (1 of 2)

• “Architecture”
• Instruction-Set Architecture (ISA)

– including pipeline parallelism
• Instruction-Level Parallelism (ILP)
• Memory Architecture and Optimization

– Caching and Virtual Memory
• Binary Translation
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Topics (2 of 2)

• Dataflow
• Multithreaded 
• Message Passing
• Shared Memory
• Vector/SIMD 
• Multiprocessor Interface/Interconnect
• Defect and Fault Tolerance
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Material

• Lots of material – will go fast
• …probably going to hit exposure over 

details
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Lectures

• Same scheme as last term
– Schedule MWF
– Accommodate holes as necessary
– Currently have 21 lectures on queue
– 2 slots held in reserve
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Reading

• Will rely on much more than last term
• Will use textbook (Hennessy and 

Patterson)
– chapters 1-6 this term

• Lectures more to complement text than 
completely overlap
– going to cover some pretty rich topics 

…can’t do it in 1.5--3 hours of lecture
• Classic papers
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Assignments

• Will pull some from text
• Emphasize experiments and 

measurement
– mostly using simplescalar

• MIPS-like architectural simulator
– some with real machines

• Running application(s) to analyze
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Logistics

• Four assignments on single threaded 
architectures
– Due Monday 9am (out prev. Mon. class)
– Still want electronic

• no handwriting/hand drawing

• Last half: project
– Try some weekly assignment targets
– (more at end of class)
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Themes for Quarter

• Recurring
– “cached” answers and change
– merit analysis (cost/performance)
– dominant/bottleneck resource 

requirements
– structure/common case
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Themes for Quarter

• New/new focus
– measurement
– abstractions/semantics
– abstractions 0, 1, infinity
– dynamic data/event handling (vs. static)
– predictability (avg. vs. worst case)
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“Architecture”

What? Why?
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“Architecture”

• “attributes of a system as seen by the 
programmer”

• “conceptual structure and functional 
behavior”

• Defines the visible interface between 
the hardware and software

• Defines the semantics of the program 
(machine code)
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Architecture distinguished 
from Implementation

• IA32 architecture vs.
– 80486DX2, AMD K5, Pentium-II-700, P6

• VAX architectures vs.
– 11/750, 11/780, uVax-II

• PowerPC vs.
– PPC 601, 604, 630 …

• Alpha vs.
– EV4, 21164, 21264, …

• Admits to many different 
implementations of single architecture
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Example Distinction: 
Memory Implementation

• Abstraction: large-flat memory 
• Implementation:

– multiple-levels of caches, varying sizes
– virtual memory, with data residing on disk
– relocation of physical memory placement

• One simple abstraction
– hides details of implementation/timing

• Many implementations
– varying costs, performance, technology
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Why ?

• What’s the value of this distinction?
• Why do we have it?

• What does it cost?
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Value?

• Effort
• Economics
• Software Distribution
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Software Crisis

• Mid 1960’s
– Could build new machines at reasonable 

pace
– Could not develop software for new 

machines fast enough
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Historical Anecdotes

• Zuse from The Computer, My Life
• Brooks from Software Pioneers



11

Caltech CS184 Spring2003 -- DeHon
21

Value: Effort

• Reduce/minimize effort necessary to 
exploit new/different technology

• Number of programmers is small

• Rate of new machine/technology advance 
is large

• Key enabler to riding the technology curve
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Value: Economics
• Preserve software investment

– both uniquely developed and commercial
• Lower barrier to acceptance of new 

machine 
– all your old code runs…just faster!

• Offer range of scaling:
– need more power buy 

different/better/newer machine
– have less money buy the cheaper machine
– little/no software effort to support
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Architecture Benefits
• ISA addressed the “software crisis”

– Bottleneck to exploiting new machines was the 
need to write new software suites for them 

• Preserve investment in software
– Programmer education

• Permitted innovation in hardware
– Use more/less hardware
– Allow customers buy as much machine as they 

need
– New substrates: TTL, ECL, NMOS, CMOS…
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Value: Software Distribution

• Vendor not want to sell source
– “give away” their techniques/technology/IP 

in a way which can be co-opted/reused

– [pragmatic argument, not fundamental]
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Pragmatic: Binary vs. Source 
Compatibility

• For various software engineering 
reasons (failures?)
– source notoriously bad/problematic to port 

to new machine
– entire application not all packaged up in 

one place
• must find compatible libraries, compiler, 

compiler options, header files…
• different (newer) compilers give different results
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Pragmatic: Binary vs. Source 
Compatibility

• For various software engineering 
reasons (failures?)

• People generally more comfortable with 
binary compatibility

• ABI/Binary architectural definition 
smaller/tighter and more well defined?

• André: Shouldn’t have to be this 
way…but that’s where we are today 
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Fixed Points
• Architecture requires we “fix” the interface
• Trick is picking what to expose in the 

interface and fix, and what to hide
• What are the “fixed points?”

– how you describe the computation
– primitive operations the machine understands
– primitive data types
– interface to memory, I/O
– interface to system routines?

Caltech CS184 Spring2003 -- DeHon
28

Abstract Away?

• Specific sizes
– what fits in on-chip memory
– available memory (to some extent)
– number of peripherals
– where 0, 1, infinity comes in

• Timing 
– individual operations
– resources (e.g. memory)
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Architectural Scalability
• Depends on robustness of fixed-points

– address space
– number of registers?
– operations available

• right level of abstraction?
– Adequate primitives

• e.g. atomic ops
– sequential assumptions
– single memory?
– timing assumptions

• e.g. branch delay, architectural cycles per op?
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Change: Future like the past?

• VM/JIT compilation
• Binary Translation
• More advanced compiler technology 

and algorithms
• Architectural convergence?

– Single Threaded ISA Maturity?
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Conventional, Single-
Threaded Abstraction

• Single, large, flat memory
• sequential, control-flow execution
• instruction-by-instruction sequential 

execution
• atomic instructions
• single-thread “owns” entire machine

– isolation
• byte addressability
• unbounded memory, call depth
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Embodiment
• C+OS-API

– C+unix-API, C+Windows-API
• Compile to:

– ISA+OS-ABI
• e.g. x86+linux-ABI

• Wrap up in standard, executable 
definition
– e.g. a.out
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Abstractions

• Model for fist 
half of course

• How support?
• How optimize?
• Remarkable

– How far 
implementation 
can diverge
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Project Thoughts



18

Caltech CS184 Spring2003 -- DeHon
35

Project

• 2nd half not lend as readily to canned 
simulator

• …and, want to get experience attacking 
a problem – with measurement, 
feedback on tradeoffs

• Go for more depth in one area to 
complement whirlwind tour in class
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Idea

• Take architecture concept
• Measure conventional systems
• Modify Simulator
• Measure impact

• Again – small class – work as team on 
single project
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Proposal

• Look at native streaming support added 
to conv. ISA
– Adapt simple benchmark for streaming 

communication
– Optimize/measure communication costs 

w/out (using conv. architecture as is)
– Expand simulator to support
– Measure/compare results
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Big Ideas

• Architectural abstraction
– define the fixed points
– stable abstraction to programmer
– admit to variety of implementation
– ease adoption/exploitation of new 

hardware
– reduce human effort


