
1

Caltech CS184 Spring2003 -- DeHon
1

CS184b:
Computer Architecture

(Abstractions and Optimizations)

Day 1: March 31, 2003
Architecture Intro

Caltech CS184 Spring2003 -- DeHon
2

Today

• This Quarter
• What is Architecture?

– Why?
• Project Discussion

2

Caltech CS184 Spring2003 -- DeHon
3

CS184 Sequence

• A - structure and organization
– raw components, building blocks
– design space

• B – architectural abstractions and
optimization
– emphasis on abstractions and

optimizations including quantification
– single and multiple threads

Caltech CS184 Spring2003 -- DeHon
4

Topics this Quarter (1 of 2)

• “Architecture”
• Instruction-Set Architecture (ISA)

– including pipeline parallelism
• Instruction-Level Parallelism (ILP)
• Memory Architecture and Optimization

– Caching and Virtual Memory
• Binary Translation

3

Caltech CS184 Spring2003 -- DeHon
5

Topics (2 of 2)

• Dataflow
• Multithreaded
• Message Passing
• Shared Memory
• Vector/SIMD
• Multiprocessor Interface/Interconnect
• Defect and Fault Tolerance

Caltech CS184 Spring2003 -- DeHon
6

Material

• Lots of material – will go fast
• …probably going to hit exposure over

details

4

Caltech CS184 Spring2003 -- DeHon
7

Lectures

• Same scheme as last term
– Schedule MWF
– Accommodate holes as necessary
– Currently have 21 lectures on queue
– 2 slots held in reserve

Caltech CS184 Spring2003 -- DeHon
8

Reading

• Will rely on much more than last term
• Will use textbook (Hennessy and

Patterson)
– chapters 1-6 this term

• Lectures more to complement text than
completely overlap
– going to cover some pretty rich topics

…can’t do it in 1.5--3 hours of lecture
• Classic papers

5

Caltech CS184 Spring2003 -- DeHon
9

Assignments

• Will pull some from text
• Emphasize experiments and

measurement
– mostly using simplescalar

• MIPS-like architectural simulator
– some with real machines

• Running application(s) to analyze

Caltech CS184 Spring2003 -- DeHon
10

Logistics

• Four assignments on single threaded
architectures
– Due Monday 9am (out prev. Mon. class)
– Still want electronic

• no handwriting/hand drawing

• Last half: project
– Try some weekly assignment targets
– (more at end of class)

6

Caltech CS184 Spring2003 -- DeHon
11

Themes for Quarter

• Recurring
– “cached” answers and change
– merit analysis (cost/performance)
– dominant/bottleneck resource

requirements
– structure/common case

Caltech CS184 Spring2003 -- DeHon
12

Themes for Quarter

• New/new focus
– measurement
– abstractions/semantics
– abstractions 0, 1, infinity
– dynamic data/event handling (vs. static)
– predictability (avg. vs. worst case)

7

Caltech CS184 Spring2003 -- DeHon
13

“Architecture”

What? Why?

Caltech CS184 Spring2003 -- DeHon
14

“Architecture”

• “attributes of a system as seen by the
programmer”

• “conceptual structure and functional
behavior”

• Defines the visible interface between
the hardware and software

• Defines the semantics of the program
(machine code)

8

Caltech CS184 Spring2003 -- DeHon
15

Architecture distinguished
from Implementation

• IA32 architecture vs.
– 80486DX2, AMD K5, Pentium-II-700, P6

• VAX architectures vs.
– 11/750, 11/780, uVax-II

• PowerPC vs.
– PPC 601, 604, 630 …

• Alpha vs.
– EV4, 21164, 21264, …

• Admits to many different
implementations of single architecture

Caltech CS184 Spring2003 -- DeHon
16

Example Distinction:
Memory Implementation

• Abstraction: large-flat memory
• Implementation:

– multiple-levels of caches, varying sizes
– virtual memory, with data residing on disk
– relocation of physical memory placement

• One simple abstraction
– hides details of implementation/timing

• Many implementations
– varying costs, performance, technology

9

Caltech CS184 Spring2003 -- DeHon
17

Why ?

• What’s the value of this distinction?
• Why do we have it?

• What does it cost?

Caltech CS184 Spring2003 -- DeHon
18

Value?

• Effort
• Economics
• Software Distribution

10

Caltech CS184 Spring2003 -- DeHon
19

Software Crisis

• Mid 1960’s
– Could build new machines at reasonable

pace
– Could not develop software for new

machines fast enough

Caltech CS184 Spring2003 -- DeHon
20

Historical Anecdotes

• Zuse from The Computer, My Life
• Brooks from Software Pioneers

11

Caltech CS184 Spring2003 -- DeHon
21

Value: Effort

• Reduce/minimize effort necessary to
exploit new/different technology

• Number of programmers is small

• Rate of new machine/technology advance
is large

• Key enabler to riding the technology curve

Caltech CS184 Spring2003 -- DeHon
22

Value: Economics
• Preserve software investment

– both uniquely developed and commercial
• Lower barrier to acceptance of new

machine
– all your old code runs…just faster!

• Offer range of scaling:
– need more power buy

different/better/newer machine
– have less money buy the cheaper machine
– little/no software effort to support

12

Caltech CS184 Spring2003 -- DeHon
23

Architecture Benefits
• ISA addressed the “software crisis”

– Bottleneck to exploiting new machines was the
need to write new software suites for them

• Preserve investment in software
– Programmer education

• Permitted innovation in hardware
– Use more/less hardware
– Allow customers buy as much machine as they

need
– New substrates: TTL, ECL, NMOS, CMOS…

Caltech CS184 Spring2003 -- DeHon
24

Value: Software Distribution

• Vendor not want to sell source
– “give away” their techniques/technology/IP

in a way which can be co-opted/reused

– [pragmatic argument, not fundamental]

13

Caltech CS184 Spring2003 -- DeHon
25

Pragmatic: Binary vs. Source
Compatibility

• For various software engineering
reasons (failures?)
– source notoriously bad/problematic to port

to new machine
– entire application not all packaged up in

one place
• must find compatible libraries, compiler,

compiler options, header files…
• different (newer) compilers give different results

Caltech CS184 Spring2003 -- DeHon
26

Pragmatic: Binary vs. Source
Compatibility

• For various software engineering
reasons (failures?)

• People generally more comfortable with
binary compatibility

• ABI/Binary architectural definition
smaller/tighter and more well defined?

• André: Shouldn’t have to be this
way…but that’s where we are today

14

Caltech CS184 Spring2003 -- DeHon
27

Fixed Points
• Architecture requires we “fix” the interface
• Trick is picking what to expose in the

interface and fix, and what to hide
• What are the “fixed points?”

– how you describe the computation
– primitive operations the machine understands
– primitive data types
– interface to memory, I/O
– interface to system routines?

Caltech CS184 Spring2003 -- DeHon
28

Abstract Away?

• Specific sizes
– what fits in on-chip memory
– available memory (to some extent)
– number of peripherals
– where 0, 1, infinity comes in

• Timing
– individual operations
– resources (e.g. memory)

15

Caltech CS184 Spring2003 -- DeHon
29

Architectural Scalability
• Depends on robustness of fixed-points

– address space
– number of registers?
– operations available

• right level of abstraction?
– Adequate primitives

• e.g. atomic ops
– sequential assumptions
– single memory?
– timing assumptions

• e.g. branch delay, architectural cycles per op?

Caltech CS184 Spring2003 -- DeHon
30

Change: Future like the past?

• VM/JIT compilation
• Binary Translation
• More advanced compiler technology

and algorithms
• Architectural convergence?

– Single Threaded ISA Maturity?

16

Caltech CS184 Spring2003 -- DeHon
31

Conventional, Single-
Threaded Abstraction

• Single, large, flat memory
• sequential, control-flow execution
• instruction-by-instruction sequential

execution
• atomic instructions
• single-thread “owns” entire machine

– isolation
• byte addressability
• unbounded memory, call depth

Caltech CS184 Spring2003 -- DeHon
32

Embodiment
• C+OS-API

– C+unix-API, C+Windows-API
• Compile to:

– ISA+OS-ABI
• e.g. x86+linux-ABI

• Wrap up in standard, executable
definition
– e.g. a.out

17

Caltech CS184 Spring2003 -- DeHon
33

Abstractions

• Model for fist
half of course

• How support?
• How optimize?
• Remarkable

– How far
implementation
can diverge

Caltech CS184 Spring2003 -- DeHon
34

Project Thoughts

18

Caltech CS184 Spring2003 -- DeHon
35

Project

• 2nd half not lend as readily to canned
simulator

• …and, want to get experience attacking
a problem – with measurement,
feedback on tradeoffs

• Go for more depth in one area to
complement whirlwind tour in class

Caltech CS184 Spring2003 -- DeHon
36

Idea

• Take architecture concept
• Measure conventional systems
• Modify Simulator
• Measure impact

• Again – small class – work as team on
single project

19

Caltech CS184 Spring2003 -- DeHon
37

Proposal

• Look at native streaming support added
to conv. ISA
– Adapt simple benchmark for streaming

communication
– Optimize/measure communication costs

w/out (using conv. architecture as is)
– Expand simulator to support
– Measure/compare results

Caltech CS184 Spring2003 -- DeHon
38

Big Ideas

• Architectural abstraction
– define the fixed points
– stable abstraction to programmer
– admit to variety of implementation
– ease adoption/exploitation of new

hardware
– reduce human effort

