
1

Caltech CS184 Spring2003 -- DeHon
1

CS184b:
Computer Architecture

(Abstractions and Optimizations)

Day 15: May 9, 2003
Distributed Shared Memory

Caltech CS184 Spring2003 -- DeHon
2

Previously
• Shared Memory

– Programming Model
– Architectural Model
– Shared-Bus Implementation
– Caching Possible w/ Care for Coherence

Memory

P$ P$ P$ P$

2

Caltech CS184 Spring2003 -- DeHon
3

Also Previously

• Message Passing
– Minimal concurrency model
– Admits general network (not just bus)
– Messaging overheads and optimization

Caltech CS184 Spring2003 -- DeHon
4

Today
• Distributed Shared Memory

– No broadcast
– Memory distributed among nodes
– Directory Schemes
– Built on Message Passing Primitives

• Synchronization in DSM
– Locks
– Barriers
– Granularity

3

Caltech CS184 Spring2003 -- DeHon
5

Snoop Cache Review

• Why did we need broadcast in Snoop-
Bus protocol?

Caltech CS184 Spring2003 -- DeHon
6

Snoop Cache Review

• Why did we need broadcast in Snoop-
Bus protocol?

– Detect sharing
– Get authoritative answer when dirty

4

Caltech CS184 Spring2003 -- DeHon
7

Scalability Problem?

• Why can’t we use Snoop protocol with
more general/scalable network?
– Mesh
– fat-tree
– multistage network

• Single memory bottleneck?

Caltech CS184 Spring2003 -- DeHon
8

Misses

#s are cache
line size

[Culler/Singh/Gupta 5.23]

5

Caltech CS184 Spring2003 -- DeHon
9

Sub Problems

• How does exclusive owner know when
sharing created?

• How know every user?
– know who needs invalidation?

• How find authoritative copy?
– when dirty and cached?

Caltech CS184 Spring2003 -- DeHon
10

Distributed Memory

• Could use Banking to provide memory
bandwidth
– have network between processor nodes

and memory banks
• …But, already need network connecting

processors
• Unify interconnect and modules

– each node gets piece of “main” memory

6

Caltech CS184 Spring2003 -- DeHon
11

Distributed Memory

P$

Mem CC

P$

Mem CC

P$

Mem CC

Network

Caltech CS184 Spring2003 -- DeHon
12

“Directory” Solution

• Main memory keeps track of users of
memory location

• Main memory acts as rendezvous point
• On write,

– inform all users
• only need to inform users, not everyone

• On dirty read,
– forward to owner

7

Caltech CS184 Spring2003 -- DeHon
13

Directory

• Initial Ideal
– main memory/home location knows

• state (shared, exclusive, unused)
• all sharers

Caltech CS184 Spring2003 -- DeHon
14

Directory Behavior

• On read:
– unused

• give (exclusive) copy to requester
• record owner

– (exclusive) shared
• (send share message to current exclusive

owner)
• record owner
• return value

8

Caltech CS184 Spring2003 -- DeHon
15

Directory Behavior

• On read:
– exclusive dirty

• forward read request to exclusive owner

Caltech CS184 Spring2003 -- DeHon
16

Directory Behavior

• On Write
– send invalidate messages to all hosts

caching values
• On Write-Thru/Write-back

– update value

9

Caltech CS184 Spring2003 -- DeHon
17

Directory

[HP 8.24e2/6.29e3 and 8.25e2/6.30e3]

Individual Cache Block Directory

Caltech CS184 Spring2003 -- DeHon
18

Representation

• How do we keep track of readers
(owner) ?
– Represent
– Manage in Memory

10

Caltech CS184 Spring2003 -- DeHon
19

Directory Representation

• Simple:
– bit vector of readers
– scalability?

• State requirements scale as square of number
of processors

• Have to pick maximum number of processors
when committing hardware design

Caltech CS184 Spring2003 -- DeHon
20

Directory Representation

• Limited:
– Only allow a small (constant) number of

readers
– Force invalidation to keep down
– Common case: little sharing
– weakness:

• yield thrashing/excessive traffic on heavily
shared locations

– e.g. synchronization variables

11

Caltech CS184 Spring2003 -- DeHon
21

Directory Representation

• LimitLESS
– Common case: small number sharing in

hardware
– Overflow bit
– Store additional sharers in central memory
– Trap to software to handle
– TLB-like solution

• common case in hardware
• software trap/assist for rest

Caltech CS184 Spring2003 -- DeHon
22

Alewife Directory Entry

[Agarwal et. al. ISCA’95]

12

Caltech CS184 Spring2003 -- DeHon
23

Alewife Timings

[Agarwal et. al. ISCA’95]

Caltech CS184 Spring2003 -- DeHon
24

Alewife Nearest Neighbor
Remote Access Cycles

[Agarwal et. al. ISCA’95]

13

Caltech CS184 Spring2003 -- DeHon
25

Alewife Performance

[Agarwal et. al. ISCA’95]

Caltech CS184 Spring2003 -- DeHon
26

Alewife “Software” Directory

• Claim: Alewife performance only 2-3x
worse with pure software directory
management

• Only affects (slows) on memory side
– still have cache mechanism on requesting

processor side

14

Caltech CS184 Spring2003 -- DeHon
27

Alewife Primitive Op
Performance

[Chaiken+Agarwal,
ISCA’94]

Caltech CS184 Spring2003 -- DeHon
28

Alewife Software Data

[y: speedup
x: hardware

pointers]

[Chaiken+Agarwal, ISCA’94]

15

Caltech CS184 Spring2003 -- DeHon
29

Caveat
• We’re looking at simplified version
• Additional care needed

– write (non) atomicity
• what if two things start a write at same time?

– Avoid thrashing/livelock/deadlock
– Network blocking?
– …

• Real protocol states more involved
– see HP, Chaiken, Culler and Singh...

Caltech CS184 Spring2003 -- DeHon
30

Digesting…

16

Caltech CS184 Spring2003 -- DeHon
31

Common Case Fast

• Common case
– data local and in cache
– satisfied like any cache hit

• Only go to messaging on miss
– minority of accesses (few percent)

Caltech CS184 Spring2003 -- DeHon
32

Model Benefits

• Contrast with completely software
“Uniform Addressable Memory” in pure
MP
– must form/send message in all cases

• Here:
– shared memory captured in model
– allows hardware to support efficiently
– minimize cost of “potential” parallelism

• incl. “potential” sharing

17

Caltech CS184 Spring2003 -- DeHon
33

General Alternative?

• This requires including the semantics of
the operation deeply in the model

• Very specific hardware support
• Can we generalize?
• Provide more broadly useful

mechanism?
• Allows software/system to decide?

– (idea of Active Messages)

Caltech CS184 Spring2003 -- DeHon
34

Synchronization in DSM

18

Caltech CS184 Spring2003 -- DeHon
35

Implement: Distributed

• Can’t lock down bus
• Exchange at memory controller?

– Invalidate copies (force writeback)
– after settles, return value and write new
– don’t service writes until complete

Caltech CS184 Spring2003 -- DeHon
36

LL/SC and MP Traffic

• Address can be cached
• Spin on LL not generate global traffic

(everyone have their own copy)
• After write (e.g. unlock)

– everyone miss -- O(p) message traffic
• No need to lock down bus during

operation

Day 12

19

Caltech CS184 Spring2003 -- DeHon
37

Ticket Synchronization
• Separate counters for place in line and current

owner
• Use ll/sc to implement fetch-and-increment on

position in line
• Simple read current owner until own number

comes up
• Increment current owner when done
• Provides FIFO service (fairness)
• O(p) reads on change like ll/sc
• Chance to backoff based on expected wait time

Caltech CS184 Spring2003 -- DeHon
38

Array Based

• Assign numbers like Ticket
• But use numbers as address into an

array of synchronization bits
• Each queued user spins on different

location
• Set next location when done
• Now only O(1) traffic per invalidation

20

Caltech CS184 Spring2003 -- DeHon
39

Performance Bus

[Culler/Singh/Gupta 5.30]

Caltech CS184 Spring2003 -- DeHon
40

Queuing

• Like Array, but use queue
• Atomicly splice own synchronization

variable at end of queue
• Can allocate local to process
• Spin until predecessor done

– and splices self out

21

Caltech CS184 Spring2003 -- DeHon
41

Performance Distributed

[Culler/Singh/Gupta 8.34]

Caltech CS184 Spring2003 -- DeHon
42

Barrier Synchronization

• Guarantee all processes rendezvous at
point before continuing

• Separate phases of computation

22

Caltech CS184 Spring2003 -- DeHon
43

Simple Barrier

• Fetch-and-Decrement value
• Spin until reaches zero
• If reuse same synchronization variable

– will have to take care in reset
– one option: invert sense each barrier

Caltech CS184 Spring2003 -- DeHon
44

Simple Barrier Performance

• Bottleneck on synchronization variable
• O(p2) traffic spinning
• Each decrement invalidates cached

version

23

Caltech CS184 Spring2003 -- DeHon
45

Combining Trees
• Avoid bottleneck by building tree

– fan-in and fan-out
• Small (constant) number of nodes

rendezvous on a location
• Last arriver synchronizes up to next level
• Exploit disjoint paths in scalable network
• Spin on local variables
• Predetermine who passes up

– “Tournament”

Caltech CS184 Spring2003 -- DeHon
46

Simple Bus Barrier

[Culler/Singh/Gupta 5.31]

24

Caltech CS184 Spring2003 -- DeHon
47

Synchronization Grain Size

Caltech CS184 Spring2003 -- DeHon
48

Full/Empty Bits

• One bit on associated with data word
• Bit set if data is present (location full)
• Bit not set if data is not present (empty)
• Read to full data

– Completes like normal read
• Read to empty data

– Stalls for data to be produced
• Like a register scoreboard in the memory

system

25

Caltech CS184 Spring2003 -- DeHon
49

F/E Uses
• Like a thunk in Scheme
• Allows you to allocate a datastructure

(addresses) and pass around before data is
computed

• Non-strict operations need not block on data
being created
– Copying the address, returning it … are non-strict

• E.g. cons

• Only strict operations block
– Add (needs value)

Caltech CS184 Spring2003 -- DeHon
50

F/E Use: Example
• Consider a relaxation calculation on an

entire grid (or a cellular automata)
• Want each element to read values from

appropriate epoch
• Could barrier synch.
• With F/E bits

– can allow some processes
– to start on next iteration
– …will block on data from previous iteration

not, yet produced…

26

Caltech CS184 Spring2003 -- DeHon
51

Coarse vs. Fine-Grained...
• Barriers are coarse-grained

synchronization
– all processes rendezvous at point

• Full-empty bits are fine-grained
– synchronize each consumer with producer
– expose more parallelism
– less false waiting
– many more synchronization events

• and variables

Caltech CS184 Spring2003 -- DeHon
52

Alewife / Full Empty

• Experiment to see impact of
synchronization granularity

• Conjugate Gradient computation
• Barriers vs. full-empty bits
• [Yeung and Agarwal PPoPP’93]

27

Caltech CS184 Spring2003 -- DeHon
53

Overall Impact

Caltech CS184 Spring2003 -- DeHon
54

Alewife provides

• Ability to express fine-grained
synchronization with J-structures

• Efficient data storage (in directory)
• Hardware handling of data presence

– like memory op in common case that data
is available

28

Caltech CS184 Spring2003 -- DeHon
55

Breakdown benefit

• How much of benefit from each?
– Expressiveness
– Memory efficiency
– Hardware support

Caltech CS184 Spring2003 -- DeHon
56

Impact of Compact Memory

29

Caltech CS184 Spring2003 -- DeHon
57

Overall Contribution

II expression only
III + memory

full-empty
IV + fast bit ops

Caltech CS184 Spring2003 -- DeHon
58

Synch. Granularity

• Big benefit from expression
• Hardware can make better

– but not the dominant effect

30

Caltech CS184 Spring2003 -- DeHon
59

Big Ideas

• Model
– importance of strong model
– capture semantic intent
– provides opportunity to satisfy in various

ways
• Common case

– handle common case efficiently
– locality

Caltech CS184 Spring2003 -- DeHon
60

Big Ideas

• Hardware/Software tradeoff
– perform common case fast in hardware
– handoff uncommon case to software

• Expose parallelism
– fine-grain expressibility exposes most
– cost can be manageable

