
1

Caltech CS184 Spring2003 -- DeHon
1

CS184b:
Computer Architecture

(Abstractions and Optimizations)

Day 12: May 3, 2003
Shared Memory

Caltech CS184 Spring2003 -- DeHon
2

Today

• Shared Memory
– Model
– Bus-based Snooping
– Cache Coherence

• Synchronization
– Primitives
– Algorithms
– Performance

2

Caltech CS184 Spring2003 -- DeHon
3

Shared Memory Model

• Same model as multithreaded
uniprocessor
– Single, shared, global address space
– Multiple threads (PCs)
– Run in same address space
– Communicate through memory

• Memory appear identical between threads
• Hidden from users (looks like memory op)

Caltech CS184 Spring2003 -- DeHon
4

Synchronization

• For correctness have to worry about
synchronization
– Otherwise non-deterministic behavior
– Threads run asynchronously
– Without additional/synchronization

discipline
• Cannot say anything about relative timing

3

Caltech CS184 Spring2003 -- DeHon
5

Models

• Conceptual model:
– Processor per thread
– Single shared memory

• Programming Model:
– Sequential language
– Thread Package
– Synchronization primitives

• Architecture Model: Multithreaded
uniprocessor

Caltech CS184 Spring2003 -- DeHon
6

Conceptual Model

Memory

4

Caltech CS184 Spring2003 -- DeHon
7

Architecture Model
Implications

• Coherent view of memory
– Any processor reading at time X will see

same value
– All writes eventually effect memory

• Until overwritten
– Writes to memory seen in same order by

all processors
• Sequentially Consistent Memory View

Caltech CS184 Spring2003 -- DeHon
8

Sequential Consistency

• Memory must reflect some valid
sequential interleaving of the threads

5

Caltech CS184 Spring2003 -- DeHon
9

Sequential Consistency

• P1: A = 0
•
• A = 1
• L1: if (B==0)

• P2: B = 0

• B = 1
• L2: if (A==0)

Can both conditionals be true?

Caltech CS184 Spring2003 -- DeHon
10

Sequential Consistency

• P1: A = 0
•
• A = 1
• L1: if (B==0)

• P2: B = 0

• B = 1
• L2: if (A==0)

Both can be false

6

Caltech CS184 Spring2003 -- DeHon
11

Sequential Consistency

• P1: A = 0
•
• A = 1
• L1: if (B==0)

• P2: B = 0

• B = 1
• L2: if (A==0)

If enter L1, then A must be 1
not enter L2

Caltech CS184 Spring2003 -- DeHon
12

Sequential Consistency

• P1: A = 0
•
• A = 1
• L1: if (B==0)

• P2: B = 0

• B = 1
• L2: if (A==0)

If enter L2, then B must be 1
not enter L1

7

Caltech CS184 Spring2003 -- DeHon
13

Coherence Alone

• Coherent view of memory
– Any processor reading at time X will see

same value
– All writes eventually effect memory

• Until overwritten
– Writes to memory seen in same order by

all processors
• Coherence alone does not guarantee

sequential consistency

Caltech CS184 Spring2003 -- DeHon
14

Sequential Consistency

• P1: A = 0
•
• A = 1
• L1: if (B==0)

• P2: B = 0

• B = 1
• L2: if (A==0)

If not force visible changes of variable,
(assignments of A, B), could end up
inside both.

8

Caltech CS184 Spring2003 -- DeHon
15

Consistency

• Deals with when written value must be
seen by readers

• Coherence – w/ respect to same
memory location

• Consistency – w/ respect to other
memory locations

• …there are less strict consistency
models…

Caltech CS184 Spring2003 -- DeHon
16

Implementation

9

Caltech CS184 Spring2003 -- DeHon
17

Naïve

• What’s wrong with naïve model?

Memory

Caltech CS184 Spring2003 -- DeHon
18

What’s Wrong?

• Memory bandwidth
– 1 instruction reference per instruction
– 0.3 memory references per instruction
– 333ps cycle
– N*5 Gwords/s ?

• Interconnect
• Memory access latency

10

Caltech CS184 Spring2003 -- DeHon
19

Optimizing

• How do we improve?

Caltech CS184 Spring2003 -- DeHon
20

Naïve Caching

• What happens when add caches to
processors?

Memory

P$ P$ P$ P$

11

Caltech CS184 Spring2003 -- DeHon
21

Naïve Caching

• Cached answers may be stale
• Shadow the correct value

Caltech CS184 Spring2003 -- DeHon
22

How have both?

• Keep caching
– Reduces main memory bandwidth
– Reduces access latency

• Satisfy Model

12

Caltech CS184 Spring2003 -- DeHon
23

Cache Coherence

• Make sure everyone sees same values
• Avoid having stale values in caches
• At end of write, all cached values should

be the same

Caltech CS184 Spring2003 -- DeHon
24

Idea
• Make sure everyone sees the new value
• Broadcast new value to everyone who

needs it
– Use bus in shared-bus system

Memory

P$ P$ P$ P$

13

Caltech CS184 Spring2003 -- DeHon
25

Effects

• Memory traffic is now just:
– Cache misses
– All writes

Caltech CS184 Spring2003 -- DeHon
26

Additional Structure?

• Only necessary to write/broadcast a
value if someone else has it cached

• Can write locally if know sole owner
– Reduces main memory traffic
– Reduces write latency

14

Caltech CS184 Spring2003 -- DeHon
27

Idea

• Track usage in cache state
• “Snoop” on shared bus to detect

changes in state

Memory

P$ P$ P$ P$

RD 0300… Someone
Has copy…

Caltech CS184 Spring2003 -- DeHon
28

Cache State
• Data in cache can be in one of several states

– Not cached (not present)
– Exclusive (not shared)

• Safe to write to
– Shared

• Must share writes with others

• Update state with each memory op

15

Caltech CS184 Spring2003 -- DeHon
29

Cache Protocol

[Culler/Singh/Gupta 5.13]

RdX = Read Exclusive

Perform Write by:
•Reading exclusive
•Writing locally

Caltech CS184 Spring2003 -- DeHon
30

Snoopy Cache Organization

[Culler/Singh/Gupta 6.4]

16

Caltech CS184 Spring2003 -- DeHon
31

Cache States

• Extra bits in cache
– Like valid, dirty

Caltech CS184 Spring2003 -- DeHon
32

Misses

#s are cache
line size

[Culler/Singh/Gupta 5.23]

17

Caltech CS184 Spring2003 -- DeHon
33

Misses

[Culler/Singh/Gupta 5.27]

Caltech CS184 Spring2003 -- DeHon
34

Synchronization

18

Caltech CS184 Spring2003 -- DeHon
35

Problem

• If correctness requires an ordering
between threads,
– have to enforce it

• Was not a problem we had in the single-
thread case
– does occur in the multiple threads on

single processor case

Caltech CS184 Spring2003 -- DeHon
36

Desired Guarantees

• Precedence
– barrier synchronization

• Everything before barrier completes before
anything after begins

– producer-consumer
• Consumer reads value produced by producer

• Atomic Operation Set
• Mutual exclusion

19

Caltech CS184 Spring2003 -- DeHon
37

Read/Write Locks?

• Try implement lock with r/w:

if (~A.lock)
A.lock=true
do stuff
A.lock=false

Caltech CS184 Spring2003 -- DeHon
38

Problem with R/W locks?

• Consider context switch between test
(~A.lock=true?) and assignment
(A.lock=true)

if (~A.lock)
A.lock=true
do stuff
A.lock=false

20

Caltech CS184 Spring2003 -- DeHon
39

Primitive Need

• Need Indivisible primitive to enabled
atomic operations

Caltech CS184 Spring2003 -- DeHon
40

Original Examples

• Test-and-set
– combine test of A.lock and set into single

atomic operation
– once have lock

• can guarantee mutual exclusion at higher level

• Read-Modify-Write
– atomic read…write sequence

• Exchange

21

Caltech CS184 Spring2003 -- DeHon
41

Examples (cont.)

• Exchange
– Exchange true with A.lock
– if value retrieved was false

• this process got the lock
– if value retrieved was true

• already locked
• (didn’t change value)
• keep trying

– key is, only single exchanger get the false value

Caltech CS184 Spring2003 -- DeHon
42

Implementing...

• What required to implement?
– Uniprocessor
– Bus-based

22

Caltech CS184 Spring2003 -- DeHon
43

Implement: Uniprocessor

• Prevent Interrupt/context switch
• Primitives use single address

– so page fault at beginning
– then ok, to computation (defer faults…)

• SMT?

Caltech CS184 Spring2003 -- DeHon
44

Implement: Snoop Bus

• Need to reserve for Write
– write-through

• hold the bus between read and write
• Guarantee no operation can intervene

– write-back
• need exclusive read
• and way to defer other writes until written

23

Caltech CS184 Spring2003 -- DeHon
45

Performance Concerns?

• Locking resources reduce parallelism
• Bus (network) traffic
• Processor utilization
• Latency of operation

Caltech CS184 Spring2003 -- DeHon
46

Basic Synch. Components

• Acquisition
• Waiting
• Release

24

Caltech CS184 Spring2003 -- DeHon
47

Possible Problems

• Spin wait generates considerable
memory traffic

• Release traffic
• Bottleneck on resources
• Invalidation

– can’t cache locally…
• Fairness

Caltech CS184 Spring2003 -- DeHon
48

Test-and-Set

Try: t&s R1, A.lock
bnz R1, Try
return

• Simple algorithm
generate
considerable traffic

• p contenders
– p try first, 1 wins
– for o(1) time p-1 spin
– …then p-2…
– c*(p+p-1+p-2,,,)
– O(p2)

25

Caltech CS184 Spring2003 -- DeHon
49

Backoff

• Instead of immediately retrying
– wait some time before retry
– reduces contention
– may increase latency

• (what if I’m only contender and is about to be
released?)

Caltech CS184 Spring2003 -- DeHon
50

Primitive Bus Performance

[Culler/Singh/Gupta 5.29]

26

Caltech CS184 Spring2003 -- DeHon
51

Bad Effects

• Performance Decreases with users
– From growing traffic already noted

Caltech CS184 Spring2003 -- DeHon
52

Test-test-and-Set

Try: ld R1, A.lock
bnz R1, Try
t&s R1, A.lock
bnz R1, Try
return

• Read can be to local
cache

• Not generate bus
traffic

• Generates less
contention traffic

27

Caltech CS184 Spring2003 -- DeHon
53

Detecting atomicity sufficient

• Fine to detect if operation will appear
atomic

• Pair of instructions
– ll -- load locked

• load value and mark in cache as locked
– sc -- store conditional

• stores value iff no intervening write to address
• e.g. cache-line never invalidated by write

Caltech CS184 Spring2003 -- DeHon
54

LL/SC operation

Try: LL R1 A.lock
BNZ R1, Try
SC R2, A.lock
BEQZ Try
return from lock

28

Caltech CS184 Spring2003 -- DeHon
55

LL/SC

• Pair doesn’t really lock value
• Just detects if result would appear that way
• Ok to have arbitrary interleaving between LL

and SC
• Ok to have capacity eviction between LL and

SC
– will just fail and retry

Caltech CS184 Spring2003 -- DeHon
56

LL/SC and MP Traffic

• Address can be cached
• Spin on LL not generate global traffic

(everyone have their own copy)
• After write (e.g. unlock)

– everyone miss -- O(p) message traffic
• No need to lock down bus during

operation

29

Caltech CS184 Spring2003 -- DeHon
57

Performance Bus

[Culler/Singh/Gupta 5.30]

[talk about
array+ticket
later]

Caltech CS184 Spring2003 -- DeHon
58

Big Ideas

• Simple Model
– Preserve model
– While optimizing implementation

• Exploit Locality
– Reduce bandwidth and latency

30

Caltech CS184 Spring2003 -- DeHon
59

Big Ideas

• Simple primitives
– Must have primitives to support atomic

operations
– don’t have to implement atomicly

• just detect non-atomicity

• Make fast case common
– optimize for locality
– minimize contention

