
1

CALTECH cs184c Spring2001 -- DeHon

CS184c:
Computer Architecture

[Parallel and Multithreaded]

Day 9: May 3, 2001
Distributed Shared Memory

CALTECH cs184c Spring2001 -- DeHon

Reading

• Tuesday: Synchronization
– HP 8.5
– Alewife paper (if haven’t already read)

• Thursday: SIMD (SPMD)
– Hillis and Steele (definitely)
– Bolotski et. al. (scan, concrete)

2

CALTECH cs184c Spring2001 -- DeHon

Last Time
• Shared Memory

– Programming Model
– Architectural Model
– Shared-Bus Implementation
– Caching Possible w/ Care for Coherence

Memory

P$ P$ P$ P$

CALTECH cs184c Spring2001 -- DeHon

Today

• Distributed Shared Memory
– No broadcast
– Memory distributed among nodes
– Directory Schemes
– Built on Message Passing Primitives

3

CALTECH cs184c Spring2001 -- DeHon

Snoop Cache Review

• Why did we need broadcast in Snoop-
Bus protocol?

CALTECH cs184c Spring2001 -- DeHon

Snoop Cache Review

• Why did we need broadcast in Snoop-
Bus protocol?

– Detect sharing
– Get authoritative answer when dirty

4

CALTECH cs184c Spring2001 -- DeHon

Scalability Problem?

• Why can’t we use Snoop protocol with
more general/scalable network?
– Mesh
– fat-tree
– multistage network

• Single memory bottleneck?

CALTECH cs184c Spring2001 -- DeHon

Misses

#s are cache
line size

[Culler/Singh/Gupta 5.23]

5

CALTECH cs184c Spring2001 -- DeHon

Sub Problems

• Exclusive owner know when sharing
created

• Know every user
– know who needs invalidation

• Find authoritative copy
– when dirty and cached

CALTECH cs184c Spring2001 -- DeHon

Distributed Memory

• Could use Banking to provide memory
bandwidth
– have network between processor nodes

and memory banks

• Already need network connecting
processors

• Unify interconnect and modules
– each node gets piece of “main” memory

6

CALTECH cs184c Spring2001 -- DeHon

Distributed Memory

P$

Mem CC

P$

Mem CC

P$

Mem CC

Network

CALTECH cs184c Spring2001 -- DeHon

“Directory” Solution

• Main memory keeps track of users of
memory location

• Main memory acts as rendezvous point
• On write,

– inform all users
• only need to inform users, not everyone

• On dirty read,
– forward to owner

7

CALTECH cs184c Spring2001 -- DeHon

Directory

• Initial Ideal
– main memory/home location knows

• state (shared, exclusive, unused)
• all sharers

CALTECH cs184c Spring2001 -- DeHon

Directory Behavior

• On read:
– unused

• give (exclusive) copy to requester
• record owner

– (exclusive) shared
• (send share message to current exclusive

owner)
• record owner
• return value

8

CALTECH cs184c Spring2001 -- DeHon

Directory Behavior

• On read:
– exclusive dirty

• forward read request to exclusive owner

CALTECH cs184c Spring2001 -- DeHon

Directory Behavior

• On Write
– send invalidate messages to all hosts

caching values

• On Write-Thru/Write-back
– update value

9

CALTECH cs184c Spring2001 -- DeHon

Directory

[HP 8.24 and 8.25]

CALTECH cs184c Spring2001 -- DeHon

Representation

• How do we keep track of readers
(owner) ?
– Represent
– Manage in Memory

10

CALTECH cs184c Spring2001 -- DeHon

Directory Representation

• Simple:
– bit vector of readers
– scalability?

• State requirements scale as square of number
of processors

• Have to pick maximum number of processors
when committing hardware design

CALTECH cs184c Spring2001 -- DeHon

Directory Representation

• Limited:
– Only allow a small (constant) number of

readers
– Force invalidation to keep down
– Common case: little sharing
– weakness:

• yield thrashing/excessive traffic on heavily
shared locations

– e.g. synchronization variables

11

CALTECH cs184c Spring2001 -- DeHon

Directory Representation

• LimitLESS
– Common case: small number sharing in

hardware
– Overflow bit
– Store additional sharers in central memory
– Trap to software to handle
– TLB-like solution

• common case in hardware
• software trap/assist for rest

CALTECH cs184c Spring2001 -- DeHon

Alewife Directory Entry

[Agarwal et. al. ISCA’95]

12

CALTECH cs184c Spring2001 -- DeHon

Alewife Timings

[Agarwal et. al. ISCA’95]

CALTECH cs184c Spring2001 -- DeHon

Alewife Nearest Neighbor
Remote Access Cycles

[Agarwal et. al. ISCA’95]

13

CALTECH cs184c Spring2001 -- DeHon

Alewife Performance

[Agarwal et. al. ISCA’95]

CALTECH cs184c Spring2001 -- DeHon

Alewife “Software” Directory

• Claim: Alewife performance only 2-3x
worse with pure software directory
management

• Only on memory side
– still have cache mechanism on requesting

processor side

14

CALTECH cs184c Spring2001 -- DeHon

Alewife Primitive Op
Performance

[Chaiken+Agarwal,
 ISCA’94]

CALTECH cs184c Spring2001 -- DeHon

Alewife Software Data

[y: speedup
 x: hardware
 pointers]

[Chaiken+Agarwal, ISCA’94]

15

CALTECH cs184c Spring2001 -- DeHon

Caveat

• We’re looking at simplified version
• Additional care needed

– write (non) atomicity
• what if two things start a write at same time?

– Avoid thrashing/livelock/deadlock
– Network blocking?
– …

• Real protocol states more involved
– see HP, Chaiken, Culler and Singh...

CALTECH cs184c Spring2001 -- DeHon

Common Case Fast

• Common case
– data local and in cache
– satisfied like any cache hit

• Only go to messaging on miss
– minority of accesses (few percent)

16

CALTECH cs184c Spring2001 -- DeHon

Model Benefits

• Contrast with completely software
“Uniform Addressable Memory” in pure
MP
– must form/send message in all cases

• Here:
– shared memory captured in model
– allows hardware to support efficiently
– minimize cost of “potential” parallelism

• incl. “potential” sharing

CALTECH cs184c Spring2001 -- DeHon

Apply to Other things?

• I-structure read/write
• Frame allocation
• Pass result (inlet)
• Data following computation

17

CALTECH cs184c Spring2001 -- DeHon

General Alternative?

• This requires including the semantics of
the operation deeply in the model

• Very specific hardware support
• Can we generalize?
• Provide more broadly useful

mechanism?
• Allows software/system to decide?

– (idea of Active Messages)

CALTECH cs184c Spring2001 -- DeHon

Maybe...

• Expose cache (local) misses to
processor

• Selective thread spawn on miss
• General non-common-case redirect?

– Full/empty data …

• How use w/ AM for SM?

18

CALTECH cs184c Spring2001 -- DeHon

Big Ideas

• Model
– importance of strong model
– capture semantic intent
– provides opportunity to satisfy in various

ways

• Common case
– handle common case efficiently
– locality

CALTECH cs184c Spring2001 -- DeHon

Big Ideas

• Hardware/Software tradeoff
– perform common case fast in hardware
– handoff uncommon case to software

