
1

CALTECH cs184c Spring2001 -- DeHon

CS184c:
Computer Architecture

[Parallel and Multithreaded]

Day 6: April 19, 2001
Dataflow

CALTECH cs184c Spring2001 -- DeHon

Talks

• Ron Weiss
– Cellular Computation and Communication

using Engineered Genetic Regulatory
Networks

– [(Bio) Cellular Message Passing ☺]
– Today 4pm
– Beckman Institute Auditorium

2

CALTECH cs184c Spring2001 -- DeHon

Reading

• More dynamic schedule revision
• Multithreading next

– HEP historical/intro Full-Empty Bits
• May skip

– Tullsen… simultaneous multithread…
• Please read

– Burns … Quantifying SMT
• Please read

CALTECH cs184c Spring2001 -- DeHon

Today

• Fine-Grained Threading
• Split-Phase
• Futures / Full-Empty Bits / I-structures
• TAM

3

CALTECH cs184c Spring2001 -- DeHon

Fine-Grained Threading

• Familiar with multiple threads of control
– Multiple PCs

• Difference in power / weight
– Costly to switch / associated state
– What can do in each thread

• Power
– Exposing parallelism
– Hiding latency

CALTECH cs184c Spring2001 -- DeHon

TAM Fine-Grained Threading

• Activation Frame – block of memory
associated with a procedure or loop
body

• Thread – piece of straightline code that
does not block or branch (single entry)

• Inlet – lightweight thread for handling
inputs

4

CALTECH cs184c Spring2001 -- DeHon

Analogies

• Activation Frame ~ Stack Frame
– Heap allocated

• Procedure Call ~ Frame Allocation
– Multiple allocation creates parallelism

• Thread ~ basic block
• Start/fork ~ branch

– Multiple spawn creates local parallelism
• Switch ~ conditional branch

CALTECH cs184c Spring2001 -- DeHon

Fine-grained Threading

• Computational model with explicit
parallelism, synchronization

5

CALTECH cs184c Spring2001 -- DeHon

Split-Phase Operations

• Separate request and response side of
operation
– Idea: tolerate long latency operations

• Contrast with waiting on response

CALTECH cs184c Spring2001 -- DeHon

Canonical Example:
Memory Fetch

• Conventional
– Perform read
– Stall waiting on reply

• Optimizations
– Prefetch memory
– Then access later

• Goal: separate request and response

6

CALTECH cs184c Spring2001 -- DeHon

Split-Phase Memory

• Send memory fetch request
– Have reply to different thread

• Next thread enabled on reply
• Go off and run rest of this thread (other

threads) between request and reply

CALTECH cs184c Spring2001 -- DeHon

Prefetch vs. Split-Phase

• Prefetch in sequential ISA
– Must guess delay
– Can request before need
– …but have to pick how many instructions

to place between request and response

7

CALTECH cs184c Spring2001 -- DeHon

Split-Phase Communication

• Also for non-rendezvous communication
– Buffering

• Overlaps computation with
communication

• Hide latency with parallelism

CALTECH cs184c Spring2001 -- DeHon

Key Element of DF Control

• Synchronization on Data Presence
• Construct:

– Futures
– Full-empty bits
– I-structures

8

CALTECH cs184c Spring2001 -- DeHon

Future

• Future is a promise
• An indication that a value will be

computed
– And a handle for getting a handle on it

• Sometimes used as program construct

CALTECH cs184c Spring2001 -- DeHon

Future

• Future computation immediately returns
a future

• Future is a handle/pointer to result
• (define (dot a b)

– (cons (future (* (first a) (first b)))
–(dot (rest a) (rest b))))

9

CALTECH cs184c Spring2001 -- DeHon

Fib

• (define (fib n)
– (if (< n 2) 1 (+ (future (fib (- n 1)))
– (future (fib (- n 2))))))

CALTECH cs184c Spring2001 -- DeHon

Strict/non-strict

• Strict operation requires the value of
some variable
– E.g. add, multiply

• Non-strict operation only needs the
handle for a value
– E.g. cons, procedure call

• (anything that just passes the handle off)

10

CALTECH cs184c Spring2001 -- DeHon

Futures

• Safe with functional routines
– Create dataflow

• Can introduce non-determinacy with
side-effecting routines
– Not clear when operation completes

CALTECH cs184c Spring2001 -- DeHon

Future/Side-Effect hazard

• (define (decrement! a b)
– (set! a (- a b)))

• (print (* (future (decrement! c d))
• (future (decrement! d 2))))

11

CALTECH cs184c Spring2001 -- DeHon

Full/Empty bit

• Tag on data indicates data presence
– E.g. tag in memory, RF
– Like Scoreboard present bit

• When computation allocated, set to empty
– E.g. operation issued into pipe, future call made

• When computation completes
– Future computation completes
– Data written into slot (register, memory)
– Bit set to full

• On data access
– Bit full, strict operation can get value
– Bit empty, strict operation block on completion

CALTECH cs184c Spring2001 -- DeHon

I-Structure

• Array/object with full-empty bits on each
field

• Allocated empty
• Fill in value as compute
• Strict access on empty

– Queue requester in structure
– Send value to requester when written and

becomes full

12

CALTECH cs184c Spring2001 -- DeHon

I-Structure

• Allows efficient “functional” updates to
aggregate structures

• Can pass around pointers to objects
• Preserve ordering/determinacy
• E.g. arrays

CALTECH cs184c Spring2001 -- DeHon

Threaded Abstract Machine

13

CALTECH cs184c Spring2001 -- DeHon

TAM

• Parallel Assembly Language
• Fine-Grained Threading
• Hybrid Dataflow
• Scheduling Hierarchy

CALTECH cs184c Spring2001 -- DeHon

Pure Dataflow

• Every operation is dataflow enabled
• Good

– Exposes maximum parallelism
– Tolerant to arbitrary delays

• Bad
– Synchronization on event costly

• More costly than straightline code
• Space and time

– Exposes non-useful parallelism

14

CALTECH cs184c Spring2001 -- DeHon

Old Example
Task Has Parallelism

MPY R3,R2,R2 MPY R4,R2,R5

MPY R3,R6,R3 ADD R4,R4,R7

ADD R4,R3,R4

CS184b

CALTECH cs184c Spring2001 -- DeHon

Hybrid Dataflow

• Use straightline/control flow
– When successor known
– When more efficient

• Basic blocks (fine-grained threads)
– Think of as coarser-grained DF objects
– Collect up inputs
– Run basic block like conv. RISC basic-

block (known non-blocking)

15

CALTECH cs184c Spring2001 -- DeHon

Great Project

• Model and assess control flow versus
dataflow

• General formulation
– Whole problem could be run control or data

flow
– Pick when to use control vs. dataflow
– Base on

• Cost of synchronization
• Model of delay predictability
• Minimize expected runtime

CALTECH cs184c Spring2001 -- DeHon

Stopped Here

4/19/01

16

CALTECH cs184c Spring2001 -- DeHon

TL0 Model

• Activition Frame (like stack frame)
– Variables
– Synchronization
– Thread stack (continuation vectors)

• Heap Storage
– I-structures

CALTECH cs184c Spring2001 -- DeHon

TL0 Ops

• RISC-like ALU Ops
• FORK
• SWITCH
• STOP
• POST
• FALLOC
• FFREE
• SWAP

17

CALTECH cs184c Spring2001 -- DeHon

Scheduling Hierarchy

• Intra-frame
– Related threads in same frame
– Frame runs on single processor
– Schedule together, exploit locality

• (cache, maybe regs)

• Inter-frame
– Only swap when exhaust work in current

frame

CALTECH cs184c Spring2001 -- DeHon

Intra-Frame Scheduling

• Simple (local) stack of pending threads
• Fork places new PC on stack
• STOP pops next PC off stack
• Stack initialized with code to exit

activation frame
– Including schedule next frame
– Save live registers

18

CALTECH cs184c Spring2001 -- DeHon

TL0/CM5 Intra-frame

• Fork on thread
– Fall through 0 inst
– Unsynch branch 3 inst
– Successful synch 4 inst
– Unsuccessful synch 8 inst

• Push thread onto LCV 3-6 inst

CALTECH cs184c Spring2001 -- DeHon

Fib Example

• [look at how this turns into TL0 code]

19

CALTECH cs184c Spring2001 -- DeHon

Multiprocessor Parallelism

• Comes from frame allocations
• Runtime policy where allocate frames

– Maybe use work stealing?

CALTECH cs184c Spring2001 -- DeHon

Frame Scheduling

• Inlets to non-active frames initiate
pending thread stack (RCV)

• First inlet may place frame on
processor’s runable frame queue

• SWAP instruction picks next frame
branches to its enter thread

20

CALTECH cs184c Spring2001 -- DeHon

CM5 Frame Scheduling Costs

• Inlet Posts on non-running thread
– 10-15 instructions

• Swap to next frame
– 14 instructions

• Average thread cost 7 cycles
– Constitutes 15-30% TL0 instr

CALTECH cs184c Spring2001 -- DeHon

Instruction Mix

[Culler et. Al.
JPDC, July 1993]

21

CALTECH cs184c Spring2001 -- DeHon

Cycle
Breakdown

[Culler et. Al.
JPDC, July 1993]

CALTECH cs184c Spring2001 -- DeHon

Speedup Example

[Culler et. Al.
JPDC, July 1993]

22

CALTECH cs184c Spring2001 -- DeHon

Thread Stats

• Thread lengths 3—17
• Threads run per “quantum” 7—530

[Culler et. Al. JPDC, July 1993]

CALTECH cs184c Spring2001 -- DeHon

Great Project

• Develop optimized µArch for TAM
– Hardware support/architecture for single-

cycle thread-switch/post

23

CALTECH cs184c Spring2001 -- DeHon

Big Ideas

• Primitives
– Parallel Assembly Language
– Threads for control
– Synchronization (post, full-empty)

• Latency Hiding
– Threads, split-phase operation

• Exploit Locality
– Create locality

• Scheduling quanta

