CS184c:
Computer Architecture
[Parallel and Multithreaded]

Day 6: April 19, 2001

Dataflow
\ i l.Frrl,
Talks

» Ron Weiss

— Cellular Computation and Communication
using Engineered Genetic Regulatory
Networks

—[(Bio) Cellular Message Passing ©]
— Today 4pm
— Beckman Institute Auditorium

Reading

* More dynamic schedule revision

* Multithreading next
— HEP historical/intro Full-Empty Bits
* May skip
— Tullsen... simultaneous multithread...
» Please read

— Burns ... Quantifying SMT
* Please read

Today

Fine-Grained Threading

Split-Phase

Futures / Full-Empty Bits / I-structures
TAM

Fine-Grained Threading

« Familiar with multiple threads of control
— Multiple PCs
 Difference in power / weight
— Costly to switch / associated state
— What can do in each thread
* Power
— Exposing parallelism
— Hiding latency

TAM Fine-Grained Threading

» Activation Frame — block of memory

associated with a procedure or loop
body

* Thread — piece of straightline code that
does not block or branch (single entry)

* Inlet — lightweight thread for handling
inputs

Analogies

Activation Frame ~ Stack Frame

— Heap allocated

Procedure Call ~ Frame Allocation

— Multiple allocation creates parallelism
Thread ~ basic block

Start/fork ~ branch

— Multiple spawn creates local parallelism
Switch ~ conditional branch

Fine-grained Threading

« Computational model with explicit
parallelism, synchronization

Split-Phase Operations

» Separate request and response side of
operation
— ldea: tolerate long latency operations

» Contrast with waiting on response

Canonical Example:
Memory Fetch

« Conventional

— Perform read

— Stall waiting on reply
* Optimizations

— Prefetch memory

— Then access later

» Goal: separate request and response

Split-Phase Memory

« Send memory fetch request
— Have reply to different thread
* Next thread enabled on reply

» Go off and run rest of this thread (other
threads) between request and reply

Prefetch vs. Split-Phase

* Prefetch in sequential ISA
— Must guess delay
— Can request before need

— ...but have to pick how many instructions
to place between request and response

Split-Phase Communication

e Also for non-rendezvous communication
— Buffering

» Overlaps computation with
communication

» Hide latency with parallelism

Key Element of DF Control

» Synchronization on Data Presence
e Construct:

— Futures

— Full-empty bits

— |-structures

Future

» Future is a promise

« An indication that a value will be
computed
— And a handle for getting a handle on it

» Sometimes used as program construct

Future

» Future computation immediately returns
a future

» Future is a handle/pointer to result
 (define (dot a b)

— (cons (future (* (first a) (first b)))
—(dot (rest a) (rest b))))

Fib

* (define (fib n)
— (if (< n 2) 1 (+ (future (fib (- n 1)))
- (future (fib (- n 2))))))

Strict/non-strict

 Strict operation requires the value of
some variable

— E.g. add, multiply
» Non-strict operation only needs the
handle for a value

— E.g. cons, procedure call
* (anything that just passes the handle off)

Futures

» Safe with functional routines
— Create dataflow

« Can introduce non-determinacy with
side-effecting routines

— Not clear when operation completes

Future/Side-Effect hazard

» (define (decrement! a b)
— (set! a (- a b)))

 (print (* (future (decrement! c d))
. (future (decrement! d 2))))

10

Full/Empty bit

Tag on data indicates data presence

— E.g. tag in memory, RF

— Like Scoreboard present bit

When computation allocated, set to empty
— E.g. operation issued into pipe, future call made
When computation completes

— Future computation completes

— Data written into slot (register, memory)

— Bit set to full

On data access

— Bit full, strict operation can get value
=.Bit.empty, strict operation block on completion

|-Structure

Array/object with full-empty bits on each
field

Allocated empty

Fill in value as compute

Strict access on empty

- Queue requester in structure

— Send value to requester when written and
becomes full

11

|-Structure

Allows efficient “functional” updates to
aggregate structures

Can pass around pointers to objects
Preserve ordering/determinacy
E.g. arrays

Threaded Abstract Machine

12

TAM

Parallel Assembly Language
Fine-Grained Threading
Hybrid Dataflow

Scheduling Hierarchy

Pure Dataflow

» Every operation is dataflow enabled

* Good
— Exposes maximum parallelism
— Tolerant to arbitrary delays

 Bad

— Synchronization on event costly
* More costly than straightline code
» Space and time

— Exposes non-useful parallelism

13

CS184b

Old Example
—TFaskHasParatetism——

MPY R3,R2,R2 MPY R4,R2,R5

MPY R;,%‘ W4,R4,R7

ADD R4,R3,R4

x_

CALTECH cs184c Spring2001 -- DeHon

Hybrid Dataflow

» Use straightline/control flow
— When successor known
— When more efficient

» Basic blocks (fine-grained threads)
— Think of as coarser-grained DF objects
— Collect up inputs

— Run basic block like conv. RISC basic-
block (known non-blocking)

CALTECH cs184c Spring2001 -- DeHon

14

<\\§ Great Project }?

 Model and assess control flow versus
dataflow

* General formulation
— Whole problem could be run control or data
flow
— Pick when to use control vs. dataflow
—Base on
» Cost of synchronization
» Model of delay predictability
* Minimize expected runtime

Stopped Here

4/19/01

15

TLO Model

 Activition Frame (like stack frame)
— Variables
— Synchronization
— Thread stack (continuation vectors)
 Heap Storage
— |-structures

TLO Ops

RISC-like ALU Ops
FORK

SWITCH

STOP

POST

FALLOC

FFREE

SWAP

Scheduling Hierarchy

* Intra-frame
— Related threads in same frame
— Frame runs on single processor
— Schedule together, exploit locality
* (cache, maybe regs)
* Inter-frame

— Only swap when exhaust work in current
frame

Intra-Frame Scheduling

Simple (local) stack of pending threads
Fork places new PC on stack
STOP pops next PC off stack

Stack initialized with code to exit
activation frame

— Including schedule next frame

— Save live registers

17

TLO/CMS5 Intra-frame

* Fork on thread
— Fall through 0O inst
— Unsynch branch 3 inst
— Successful synch 4 inst
— Unsuccessful synch 8 inst
* Push thread onto LCV 3-6 inst

Fib Example

 [look at how this turns into TLO code]

18

Multiprocessor Parallelism

e Comes from frame allocations

» Runtime policy where allocate frames
— Maybe use work stealing?

Frame Scheduling

* |Inlets to non-active frames initiate
pending thread stack (RCV)

 First inlet may place frame on
processor’s runable frame queue

 SWAP instruction picks next frame
branches to its enter thread

19

CM5 Frame Scheduling Costs

* Inlet Posts on non-running thread
—10-15 instructions

« Swap to next frame
— 14 instructions

« Average thread cost 7 cycles
— Constitutes 15-30% TLO instr

CALTECH cs184c Spring2001 -- DeHon

Instruction Mix

[Culler et. Al
JPDC, July 1993]

GAMTEB
PARAFFINS
SPEECH
AVERAGE

CALTECH cs184c Spril

20

Cycle

Breakdown g
[i =
| [e— % = . i
.] L

i
1
[W=
?
1oF
n
Ex

37
1]

Y
E:
&
P |- 7 iz =
az [+ | 3] 1
| - = 1.
Pl

[Culler et. Al. - S =,
JPDC, July 1993] [- ..-;;Q.
CALTECH cs184c Spri . ’ % ; E g g %

cs ¢ Spring2001 -- DeHon z =

Speedup Example
E L B |

[Culler et. Al
JPDC, July 1993]

o =1 kil 3
CALTECH cs184c Spring2001 -- [Wurber of Procemon

=

a

]

&5

Thread Stats

* Thread lengths 3—17
e Threads run per “quantum” 7—530

Q5 [Gomteh | Pomaffins | Simple | Sposch MMT |
Ave TLO Insts. per Theead 2.6 3.2 3.1 53 6.3 176
Theeads per (uanta (TS 155 2155 7.5 16.7 F30.0
ROV Srze when Schedulad 1.1 1.6 1.3 14 1.0 16
Thrends forked durmg Chapntum R 102 1684 41 11.7 A6
Thresds posted during Chasgntom 1.5 L8 45.7 1.3 4.0 121.9
Quanta per Inavocation 4.1 3.4 27 4.8 21.7 3.4

Tabbe % Dynaunic scheduling characteristics under TAM for two progroms on o 64 processor Cvl-5

[Culler et. Al. JPDC, July 1993]

CALTECH cs184c Spring2001 -- DeHon

Qﬁ Great Project }?

» Develop optimized mArch for TAM

— Hardware support/architecture for single-
cycle thread-switch/post

CALTECH cs184c Spring2001 -- DeHon

22

Big Ideas

* Primitives

— Parallel Assembly Language

— Threads for control

— Synchronization (post, full-empty)
» Latency Hiding

— Threads, split-phase operation
» Exploit Locality

— Create locality
» Scheduling quanta

23

