
1

CALTECH cs184c Spring2001 -- DeHon

CS184c:
Computer Architecture

[Parallel and Multithreaded]

Day 1: April 3, 2001
Overview and Message Passing

CALTECH cs184c Spring2001 -- DeHon

Today

• This Class
• Why/Overview
• Message Passing

2

CALTECH cs184c Spring2001 -- DeHon

CS184 Sequence

• A - structure and organization
– raw components, building blocks
– design space

• B - single threaded architecture
– emphasis on abstractions and

optimizations including quantification

• C - multithreaded architecture

CALTECH cs184c Spring2001 -- DeHon

“Architecture”

• “attributes of a system as seen by the
programmer”

• “conceptual structure and functional
behavior”

• Defines the visible interface between
the hardware and software

• Defines the semantics of the program
(machine code)

CS184b

3

CALTECH cs184c Spring2001 -- DeHon

Conventional, Single-
Threaded Abstraction

• Single, large, flat memory
• sequential, control-flow execution
• instruction-by-instruction sequential

execution
• atomic instructions
• single-thread “owns” entire machine
• byte addressability
• unbounded memory, call depth

CS184b

CALTECH cs184c Spring2001 -- DeHon

This Term

• Different models of computation
– different microarchitectures

• Big Difference: Parallelism
– previously model was sequential

• Mostly:
– Multiple Program Counters
– threads of control

4

CALTECH cs184c Spring2001 -- DeHon

Architecture Instruction
Taxonomy

CS184a

CALTECH cs184c Spring2001 -- DeHon

Why?

• Why do we need a different model?
– Different architecture?

5

CALTECH cs184c Spring2001 -- DeHon

Why?

• Density:
– Superscalars scaling super-linear with

increasing instructions/cycle
– cost from maintaining sequential model

• dependence analysis
• renaming/reordering
• single memory/RF access

– VLIW lack of model/scalability problem

• Maybe there’s a better way?

CALTECH cs184c Spring2001 -- DeHon

Consider

• Two network data ports
– states: idle, first-datum, receiving, closing
– data arrival uncorrelated between ports

CS184a

6

CALTECH cs184c Spring2001 -- DeHon

Instruction Control

• If FSMs advance orthogonally
– (really independent control)
– context depth => product of states

• for full partition

– I.e. w/ single controller (PC)
• must create product FSM
• which may lead to state explosion

– N FSMs, with S states => SN product states

– This example:
• 4 states, 2 FSMs => 16 state composite FSM

CS184a

CALTECH cs184c Spring2001 -- DeHon

Why?

• Scalablity
– compose more capable machine from

building blocks
– compose from modular building blocks

• multiple chips

7

CALTECH cs184c Spring2001 -- DeHon

Why?

• Expose/exploit parallelism better
– saw non-local parallelism when looking at

IPC
– saw need for large memory to exploit

CALTECH cs184c Spring2001 -- DeHon

Models?

• Message Passing (week 1)
• Dataflow (week 2)
• Shared Memory (week 3)
• Data Parallel (week 4)
• Multithreaded (week 5)
• Interface Special and Heterogeneous

functional units (week 6)

8

CALTECH cs184c Spring2001 -- DeHon

Additional Key Issues

• How Interconnect? (week 7-8)
• Cope with defects and Faults? (week 9)

CALTECH cs184c Spring2001 -- DeHon

Message Passing

9

CALTECH cs184c Spring2001 -- DeHon

Message Passing

• Simple extension to Models
– Compute Model
– Programming Model
– Architecture

• Low-level

CALTECH cs184c Spring2001 -- DeHon

Message Passing Model

• Collection of sequential processes
• Processes may communicate with each

other (messages)
– send
– receive

• Each process runs sequentially
– has own address space

• Abstraction is each process gets own
processor

10

CALTECH cs184c Spring2001 -- DeHon

Programming for MP

• Have a sequential language
– C, C++, Fortran, lisp…

• Add primitives (system calls)
– send
– receive
– spawn

CALTECH cs184c Spring2001 -- DeHon

Architecture for MP

• Sequential Architecture for processing
node
– add network interfaces
– process have own address space

• Add network connecting

• …minimally sufficient...

11

CALTECH cs184c Spring2001 -- DeHon

MP Architecture Virtualization

• Processes virtualize nodes
– size independent/scalable

• Virtual connections between processes
– placement independent communication

CALTECH cs184c Spring2001 -- DeHon

MP Example and
Performance Issues

12

CALTECH cs184c Spring2001 -- DeHon

N-Body Problem

• Compute pairwise gravitational forces
• Integrate positions

CALTECH cs184c Spring2001 -- DeHon

Coding

• // params position, mass….
• F=0
• For I = 1 to N

– send my params to p[body[I]]
– get params from p[body[I]]
– F+=force(my params, params)

• Update pos, velocity
• Repeat

13

CALTECH cs184c Spring2001 -- DeHon

Performance

• Body Work ~= cN
• Cycle work ~= cN2

• Ideal Np processors: cN2/Np

CALTECH cs184c Spring2001 -- DeHon

Performance Sequential

• Body work:
– read N values
– compute N force updates
– compute pos/vel from F and params

• c=t(read value) + t(compute force)

14

CALTECH cs184c Spring2001 -- DeHon

Performance MP

• Body work:
– send N messages
– receive N messages
– compute N force updates
– compute pos/vel from F and params

• c=t(send message) + t(receive
message) + t(compute force)

CALTECH cs184c Spring2001 -- DeHon

Send/receive

• t(receive)
– wait on message delivery
– swap to kernel
– copy data
– return to process

• t(send)
– similar

• t(send), t(receive) >> t(read value)

15

CALTECH cs184c Spring2001 -- DeHon

Sequential vs. MP

• Tseq = cseq N2

• Tmp=cmpN2/Np

• Speedup = Tseq/Tmp = cseq × Np /cmp

• Assuming no waiting:
– cseq /cmp ~= t(read value) / (t(send) + t(rcv))

CALTECH cs184c Spring2001 -- DeHon

Waiting?

• Shared bus interconnect:
– wait O(N) time for N sends (receives)

across the machine

• Non-blocking interconnect:
– wait L(net) time after message send to

receive
– if insufficient parallelism

• latency dominate performance

16

CALTECH cs184c Spring2001 -- DeHon

Dertouzous Latency Bound

• Speedup Upper Bound
– processes / Latency

CALTECH cs184c Spring2001 -- DeHon

Waiting: data availability

• Also wait for data to be sent

17

CALTECH cs184c Spring2001 -- DeHon

Coding/Waiting

• For I = 1 to N
– send my params to p[body[I]]
– get params from p[body[I]]
– F+=force(my params, params)

• How long processsor I wait for first
datum?
– Parallelism profile?

CALTECH cs184c Spring2001 -- DeHon

More Parallelism

• For I = 1 to N
– send my params to p[body[I]]

• For I = 1 to N
– get params from p[body[I]]
– F+=force(my params, params)

18

CALTECH cs184c Spring2001 -- DeHon

Queuing?

• For I = 1 to N
– send my params to p[body[I]]
– get params from p[body[I]]
– F+=force(my params, params)

• No queuing?

• Queuing?

CALTECH cs184c Spring2001 -- DeHon

Dispatching

• Multiple processes on node
• Who to run?

– Can a receive block waiting?

19

CALTECH cs184c Spring2001 -- DeHon

Dispatching

• Abstraction is each process gets own
processor

• If receive blocks (holds processor)
– may prevent another process from running

upon which it depends

• Consider 2-body problem on 1 node

CALTECH cs184c Spring2001 -- DeHon

Seitz Coding

• [see reading]

20

CALTECH cs184c Spring2001 -- DeHon

MP Issues

CALTECH cs184c Spring2001 -- DeHon

Expensive Communication

• Process to process communication
goes through operating system
– system call, process switch
– exit processor, network, enter processor
– system call, processes switch

• Milliseconds?
– Thousands of cycles...

21

CALTECH cs184c Spring2001 -- DeHon

Why OS involved?

• Protection/Isolation
– can this process send/receive with this

other process?

• Translation
– where does this message need to go?

• Scheduling
– who can/should run now?

CALTECH cs184c Spring2001 -- DeHon

Issues

• Process Placement
– locality
– load balancing

• Cost for excessive parallelism
– E.g. N-body on Np < N processor ?

• Message hygiene
– ordering, single delivery, buffering

• Deadlock
– user introduce, system introduce

22

CALTECH cs184c Spring2001 -- DeHon

Low-Level Model

• Places burden on user [too much]
– decompose problem explicitly

• sequential chunk size not abstract
• scale weakness in architecture

– guarantee correctness in face of non-
determinism

– placement/load-balancing
• in some systems

• Gives considerable explicit control

CALTECH cs184c Spring2001 -- DeHon

Low-Level Primitives

• Has the necessary primitives for
multiprocessor cooperation

• Maybe an appropriate compiler target?
– Architecture model, but not

programming/compute model?

23

CALTECH cs184c Spring2001 -- DeHon

Announcements

• Note: CS25 next Monday/Tuesday
– Seitz speaking on Tuesday
– Dally speaking on Monday
– (also Mead)
– […even DeHon… :-)]

• Changing schedule (…already…)
– Network Interface bumped up to next Mon.

• von Eicken et. Al., Active Messages
• Henry and Joerg, Tightly couple P-NI

CALTECH cs184c Spring2001 -- DeHon

Big Ideas

• Value of Architectural Abstraction
• Sequential abstraction

– limits implementation freedom
– requires large cost to support

• semantic mismatch between model and
execution

• Parallel models expose more
opportunities

24

CALTECH cs184c Spring2001 -- DeHon

Big Ideas

• MP has minimal primitives
– appropriate low-level model
– too raw/primitive for user model

• Communication essential component
– can be expensive
– doing well is necessary to get good

performance (come out ahead)
– watch OS cost...

