CS184c: Computer Architecture [Parallel and Multithreaded]

Day 15: May 29, 2001 Interconnect

CALTECH cs184c Spring2001 -- DeHon

Previously

- CS184a: Day 11--14
 - interconnect needs and requirements
 - basic topology
- This quarter
 - most systems require
 - interfacing issues
 - model, hardware, software

Today

- Issues
- Topology/locality/scaling
 - (some review)
- Styles
 - from static
 - to online, packet, wormhole
- Online routing

CALTECH cs184c Spring2001 -- DeHon

Issues

- Bandwidth
 - aggregate, per endpoint
 - local contention and hotspots
- Latency
- Cost (scaling)
 - locality

- Arbitration
 - conflict resolution
 - deadlock
- Routing
 - (quality vs. complexity)
- Ordering

Topology and Locality

(Partially) Review

CALTECH cs184c Spring2001 -- DeHon

Simple Topologies: Bus

- Single Bus
 - simple, cheap
 - low bandwidth
 - not scale with PEs
 - typically online arbitration
 - can be offline scheduled

Bus Routing

- Offline:
 - divide time into N slots
 - assign positions to various communications
 - run modulo N w/ each consumer/producer

send/receiving on

time slot

- e.g.
 - 1: A->B
 - 2: C->D
 - 3: A->C
 - 4: A->B
 - 5: C->B
 - 6: D->A
 - 7: D->B
 - 8: A->D

CALTECH cs184c Spring2001 -- DeHon

Bus Routing

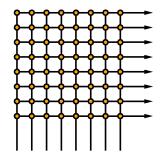
- Online:
 - request bus
 - wait for acknowledge
- Priority based:
 - give to highest priority which requests
 - consider ordering
 - Got_i = Want_i ^ Avail_i Avail_{i+1}=Avail_i ^ /Want_i
- /Want; CALTECH cs184c Spring2001 -- DeHon

- Solve arbitration in log time using parallel prefix
- For fairness
 - start priority at different node
 - use cyclic parallel prefix
 - deal with variable starting point

Token Ring

- On bus
 - delay of cycle goes as N
 - can't avoid, even if talking to nearest neighbor
- Token ring
 - pipeline bus data transit (ring)
 - high frequency
 - can exit early if local
 - use token to arbitrate use of bus

CALTECH cs184c Spring2001 -- DeHon

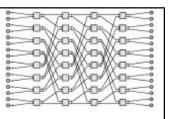

Multiple Busses

- Simple way to increase bandwidth
 - use more than one bus
- Can be static or dynamic assignment to busses
 - static
 - A->B always uses bus 0
 - C-> always uses bus 1
 - dynamic
 - arbitrate for a bus, like instruction dispatch to k

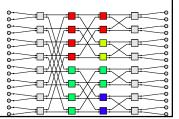
CALTECH cs184c Sprij<mark>identical</mark> €CPU resources

Crossbar

- No bandwidth reduction
 - (except receiver at endoint)
- Easy routing (on or offline)
- Scales poorly
 - N² area and delay
- No locality

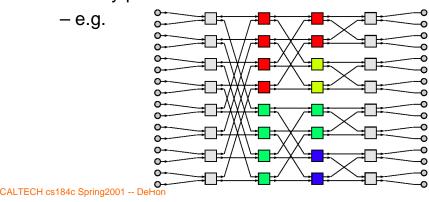


CALTECH cs184c Spring2001 -- DeHon


Hypercube

- Arrange 2ⁿ nodes in n-dimensional cube
- At most n hops from source to sink
- High bisection bandwidth
 - good for traffic
 - bad for cost [O(n²)]
- May not be able to use all of bisect ?!?
- Exploit locality
- Node size grows as log(N)...or maybe log²(N)

Multistage


- Unroll hypercube vertices so log(N), constant size switches per hypercube node
 - solve node growth problem
 - lose locality
 - similar good/bad points for rest

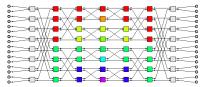
CALTECH cs184c Spring2001 -- DeHon

Hypercube/Multistage Blocking

- Minimum length multistage
 - many patterns cause bottlenecks

Hypercube/Multistage Blocking

- Solvable with non-minimum length (e.g. Beneš)
- Also solvable by routing multiple times through net
 - I.e. Beneš is two back-to-back MINs


CALTECH cs184c Spring2001 -- DeHon

Beneš Routing

- Solve recursively by looping
- Start at a route
- Pick top or bottom half to route path
- Allocate at destination
- Look at other route must come in here
- Must take alternate path
- Continue until
 - cycle closes or ends

CALTECH cs184c Spring2001 -- DeHon

- If unrouted at this level,
 - pick new starting point and continue
- Once finish this level,
 - repeat/recurse on top and bottom subproblems remaining

Online Hypercube Blocking

- If routing offline, can calculate Beneslike route
- Online, don't have time, global view
- Observation: only a few, canonically bad patterns
- Solution: Route to random intermediate
 - then route from there to destination.

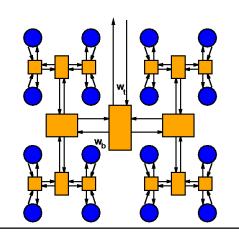
K-ary N-cube

- Alternate reduction from hypercube
 - restrict to N<log(N) dimensional structure
 - allow more than 2 ordinates in each dimension
- E.g. mesh (2-cube), 3D-mesh (3-cube)
- Matches with physical world structure
- Bounds degree at node
- Has Locality
- Even more bottleneck potentials

CALTECH 051840 make Channels wider (CS184a)

Torus

- Wrap around n-cube ends[©]
 - -2-cube \rightarrow cylinder
 - 3-cube \rightarrow donut
- Cuts worst-case distances
- Can be laid-out reasonable efficiently
 - maybe 2x cost in channel width?


Fat-Tree

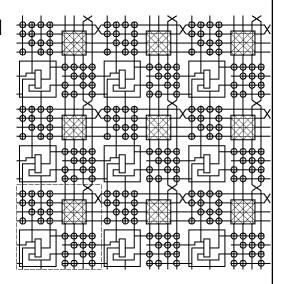
- Saw that communications typically has locality (CS184a)
- Modeled recursive bisection/Rent's Rule
- Leiserson showed Fat-Tree was (area, volume) universal
 - w/in log(N) the area of **any** other structure
 - exploit physical space limitations wiring in {2,3}-dimensions

CALTECH cs184c Spring2001 -- DeHon

Universal Fat-Tree

- P=0.5 for area universal
- P=2/3 for volume
- I.e. go as ratio
 - surface/perimeter
 - area/volume
- Directly related
 - results on depop.
 - CS184a day 13

Express Cube (Mesh with Bypass)


- Large machine in 2 or 3 D mesh
 - routes must go through square/cube root switches
 - vs. log(N) in fat-tree, hypercube, MIN
- Saw practically can go further than one hop on wire...
- Add long-wire bypass paths

CALTECH cs184c Spring2001 -- DeHon

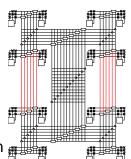
CS184a Day 14

Segmentation

- To improve speed (decrease delay)
- Allow wires to bypass switchboxes
- Maybe save switches?
- Certainly cost more wire tracks

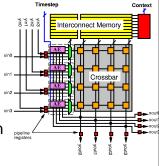
Routing Styles

CALTECH cs184c Spring2001 -- DeHon


Hardwired

- Direct, fixed wire between two points
- E.g. Conventional gate-array, std. cell
- Efficient when:
 - know communication a priori
 - fixed or limited function systems
 - high load of fixed communication
 - often control in general-purpose systems
 - links carry high throughput traffic continually between fixed points

Configurable


- Offline, lock down persistent route.
- E.g. FPGAs
- Efficient when:
 - link carries high throughput traffic
 - (loaded usefully near capacity)
 - traffic patterns change
 - on timescale >> data transmission

CALTECH cs184c Spring2001 -- DeHon

Time-Switched

- Statically scheduled, wire/switch sharing
- E.g. TDMA, NuMesh, TSFPGA
- Efficient when:
 - thruput per channel < thruput capacity of wires and switches
 - traffic patterns change
 - on timescale >> data transmission

Self-Route, Circuit-Switched

- Dynamic arbitration/allocation, lock down routes
- E.g. METRO/RN1
- Efficient when:
 - instantaneous communication bandwidth is high (consume channel)
 - lifetime of comm. > delay through network
 - communication pattern unpredictable
 - rapid connection setup important

CALTECH cs184c Spring2001 -- DeHon

Self-Route, Store-and-Forward, Packet Switched

- Dynamic arbitration, packetized data
- Get entire packet before sending to next node
- E.g. nCube, early Internet routers
- Efficient when:
 - lifetime of comm < delay through net</p>
 - -communication pattern unpredictable
 - can provide buffer/consumption guarantees
 - -packets small

Self-Route, Wormhole Packet-Switched

- Dynamic arbitration, packetized data
- E.g. Caltech MRC, Modern Internet Routers
- Efficient when:
 - lifetime of comm < delay through net</p>
 - -communication pattern unpredictable
 - can provide buffer/consumption guarantees
 - message > buffer length

CALTECH cs184c Seriral 10 W Variable (? Long) sized messages

Online Routing

Costs: Area

- Area
 - switch (1-1.5K / switch)
 - larger with pipeline (4K) and rebuffer
 - state (SRAM bit = 1.2K / bit)
 - multiple in time-switched cases
 - arbitrartion/decision making
 - usually dominates above
 - buffering (SRAM cell per buffer)
 - can dominate

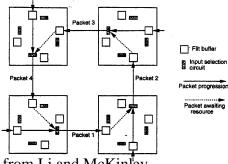
CALTECH cs184c Spring2001 -- DeHon

Costs: Latency

- Time local
 - make decisions
 - round-trip flow-control
- Time
 - blocking in buffers
 - quality of decision
 - pick wrong path
 - have stale data

Intermediate

- For large # of predictable patterns
 - switching memory may dominate allocation area
 - area of routed case < time-switched
- Get offline, global planning advantage
 - by source routing
 - source specifies offline determined route path
 - offline plan avoids contention


CALTECH cs184c Spring2001 -- DeHon

Offline vs. Online

- If know patterns in advance
 - offline cheaper
 - no arbitration (area, time)
 - no buffering
 - use more global data
 - -better results
- As becomes less predictable
 - benefit to online routing

Deadlock

- Possible to introduce deadlock
- Consider wormhole routed mesh

[example from Li and McKinley,

CALTECH cs184c Spring2001 -- DeHPEEE Computer v26n2, 1993]

Dimension Order Routing

- Simple (early Caltech) solution
 - order dimensions
 - force complete routing in lower dimensions before route in next higher dimension

Dimension Order Routing

- Avoids cycles in channel graph
- Limits routing freedom
- Can cause artificial congestion
 - consider
 - (0,0) to (4,3)
 - (1,0) to (4,2)
 - (2,0) to (4,1)
 - (3,0) to (4,0)
- [There is a rich literature on how to do better]

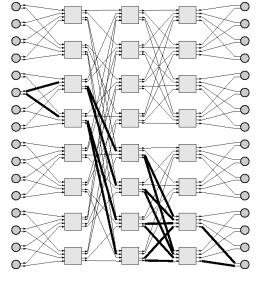
CALTECH cs184c Spring2001 -- DeHon

Virtual Channel

- Variation: each physical channel represents multiple logical channels
 - each logical channel has own buffers
 - blocking in one VC allows other VCs to use the physical link

Virtual Channel

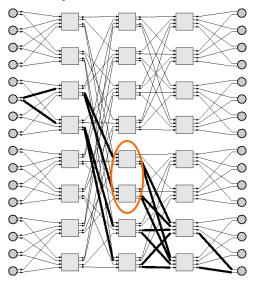
- Benefits
 - can be used to remove cycles
 - e.g. separate increasing and decreasing channels
 - · route increasing first, then decreasing
 - · more freedom than dimension ordered
 - prioritize traffic
 - e.g. prevent control/OS traffic from being blocked by user traffic
 - better utilization of physical routing channels


CALTECH cs184c Spring2001 -- DeHon

Lost Freedom?

- Online routes often make (must make) decisions based on local information
- Can make wrong decision
 - I.e. two paths look equally good at one point in net
 - but one leads to congestion/blocking further ahead

Multibutterfly Network


- Routers have multiple outputs in each logical direction
- Use to avoid congestion
 - also faults

CALTECH cs184c Spring2001 -- DeHon

Multibutterfly Network

- Can get into local blocking when there is a path
- Costs of not having global information

Transit/Metro

- Self-routing circuit switched network
- When have choice
 - select randomly
 - · avoid bad structural cases
- When blocked
 - drop connection
 - allow to route again from source
 - stochastic search explores all paths
- finds any available
 CALTECH cs184c Spring2001 -- DeHon

Chaos Router

- For mesh/packet
 - when blocked, allow route in any direction
 - allows to take non-minimizing path to get around congestion
 - avoids deadlock since blocking causes misroute
- Refs:
 - [Konstantinidou and Snyder, SPAA90]
 - http://www.cs.washington.edu/research/projects/lis/chaos/www/chaos.html

Big Ideas

- Must work with constraints of physical world
 - only have 3 dimensions (2 on current VLSI) in which to build interconnect
 - Interconnect can be dominate area, time
 - gives rise to universal networks
 - e.g. fat-tree

CALTECH cs184c Spring2001 -- DeHon

Big Ideas

- Structure
 - exploit physical locality where possible
- Structure
 - the more predictable behavior
 - cheaper the solution
 - exploit earlier binding time
 - cheaper configured solutions
 - allow higher quality offline solutions