CS184a: Computer Architecture
(Structures and Organization)

Day6: October 11, 2000
Instruction Taxonomy
VLSI Scaling

Last Time

- Computing requirements
- Instruction requirements
- Structure
Today

- Instruction Taxonomy
- VLSI Scaling

Instruction Distribution

- Beyond 64 PE, instruction bandwidth dictates PE size

\[
\frac{\sqrt{\text{PE}_{\text{area}}} \times 4 \times \sqrt{N}}{(64 \times 8 \lambda)} = N
\]

\[
\text{PE}_{\text{area}} = 16K\lambda^2 \times N
\]

- Build larger arrays
 \[\Rightarrow\] processing elements become less dense
Instruction Memory Requirements

• **Idea:** put instruction memory in array

• **Problem:** Instruction memory can quickly dominate area, too

 – Memory Area = 64 × 1.2Kλ²/instruction

 – PE_{area} = 1Mλ² + (Instructions) × 80Kλ²

Instruction Pragmatics

• Instruction requirements *could* dominate array size.

• Standard architecture trick:

 – Look for structure to exploit in “typical computations”
Two Extremes

- **SIMD Array** (microprocessors)
 - Instruction/cycle
 - share instruction across array of PEs
 - uniform operation in space
 - operation variance in time

- **FPGA**
 - Instruction/PE
 - assume temporal locality of instructions (same)
 - operation variance in space
 - uniform operations in time

Hybrids

- **VLIW (SuperScalar)**
 - Few *pins* / cycle
 - Share instruction across *w* bits

- **DPGA**
 - Small instruction store / PE
Architecture Instruction Taxonomy

<table>
<thead>
<tr>
<th>Control Threads (PCs)</th>
<th>p/insts per Control Thread</th>
<th>n/insts per Control Thread</th>
<th>c/w Granularity</th>
<th>m/n Granularity</th>
<th>Architecture/Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>n/a</td>
<td>Hardwired Functional Unit (e.g., ECC/EDC Unit, FP MPY)</td>
<td>1</td>
<td>FPGA</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>n_e/w</td>
<td>Reconfigurable ALUs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>1</td>
<td>DPGA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>n</td>
<td>c n_x/w</td>
<td>HSRA/SCORE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>c/w Vector Processors</td>
<td>MSIMD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>VEGA</td>
<td>PADDI-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>w</td>
<td>MIMD (traditional)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instruction Message

- Architectures fall out of:
 - general model too expensive
 - look for structure in common problems
 - exploit structure to reduce resource requirements
- Architectures can be viewed in a unified design space
VLSI Scaling

Why Care?

• In this game, we must be able to predict the future
• Rapid technology advance
• Reason about changes and trends
• re-evaluate prior solutions given technology at time X.
Why Care

• Cannot compare against what competitor does today
 – but what they can do at time you can ship

• Careful not to fall off curve
 – lose out to someone who can stay on curve

Scaling

• **Premise:** features scale “uniformly”
 – everything gets better in a predictable manner

• **Parameters:**
 \(\lambda \) (lambda) -- Mead and Conway (class)
 – S -- Bohr
 – \(1/\kappa \) -- Dennard
Feature Size

λ is half the minimum feature size in a VLSI process

[minimum feature usually channel width]

Scaling

- Channel Length (L)
- Channel Width (W)
- Oxide Thickness (T_{ox})
- Doping (N_a)
- Voltage (V)
Scaling

- Channel Length (L) \(\lambda \)
- Channel Width (W) \(\lambda \)
- Oxide Thickness (\(T_{\text{ox}} \)) \(\lambda \)
- Doping (\(N_a \)) \(1/\lambda \)
- Voltage (V) \(\lambda \)

Effects?

- Area
- Capacitance
- Resistance
- Threshold (\(V_{\text{th}} \))
- Current (\(I_d \))
- Gate Delay (\(\tau_{\text{gd}} \))
- Wire Delay (\(\tau_{\text{wire}} \))
- Power
Area

- $\lambda \rightarrow \lambda/\kappa$
- $A = L \times W$
- $A \rightarrow A/\kappa^2$

- $0.35\mu m \rightarrow 0.25\mu m$
- 50% area
- 2x capacity same area

Area Perspective

[2000 tech.]
18mm x 18mm
0.18μm
60G λ^2
Capacitance

- Capacitance per unit area
 - \(C_{ox} = \varepsilon_{SiO_2} / T_{ox} \)
 - \(T_{ox} \rightarrow T_{ox} / \kappa \)
 - \(C_{ox} \rightarrow \kappa C_{ox} \)

Capacitance

- Gate Capacitance
 - \(C_{gate} = A * C_{ox} \)
 - \(A \rightarrow A / \kappa^2 \)
 - \(C_{ox} \rightarrow \kappa C_{ox} \)
 - \(C_{gate} \rightarrow C_{gate} / \kappa \)
Threshold Voltage

Before:

\[V_{th} = \frac{1}{C_{OX}} \left(-Q_{eff} + \left(2\epsilon_{ox} \cdot q \cdot N_A (\phi_s + V_{sub}) \right)^{1/2} \right) + (W_f + \phi_b) \]

\((W_f + \phi_b) \approx 0 \)

Adjust \(V_{sub} \) so \((\phi_s + V_{sub}) \to \left(\phi_s + \frac{V_{sub}}{\kappa} \right) \)

After:

\[V'_{th} = \frac{1}{\kappa C_{OX}} \left(-Q_{eff} + \left(2\epsilon_{ox} \cdot q \cdot N_A \left(\phi_s + \frac{V_{sub}}{\kappa} \right) \right)^{1/2} \right) \]

\[V'_{th} \approx \frac{V_{th}}{\kappa} \]

Threshold Voltage

- \(V_{TH} \to V_{TH} / \kappa \)
Current

- Saturation Current
 \[I_d = \left(\mu C_{\text{ox}}/2 \right)(W/L)(V_{gs} - V_{TH})^2 \]
 - \(V_{gs} \rightarrow V/\kappa \)
 - \(V_{TH} \rightarrow V_{TH}/\kappa \)
 - \(W \rightarrow W/\kappa \)
 - \(C_{\text{ox}} \rightarrow \kappa C_{\text{ox}} \)
 - \(I_d \rightarrow I_d/\kappa \)

Gate Delay

\[\tau_{gd} = Q/I = (CV)/I \]

- \(V \rightarrow V/\kappa \)
- \(I_d \rightarrow I_d/\kappa \)
- \(C \rightarrow C/\kappa \)

\[\tau_{gd} \rightarrow \tau_{gd}/\kappa \]
Resistance

- \(R = \frac{\rho L}{W \cdot t} \)
- \(W \rightarrow \frac{W}{\kappa} \)
- \(L, t \) similar
- \(R \rightarrow \kappa R \)

Wire Delay

\[\tau_{\text{wire}} = R \cdot L \cdot C \]

- \(R \rightarrow \kappa R \)
- \(C \rightarrow \frac{C}{\kappa} \)
- \(\tau_{\text{wire}} \rightarrow \tau_{\text{wire}} \)

- ...assuming (logical) wire lengths remain constant...
Power Dissipation (Static)

- Resistive Power
 - \(P = V \times I \)
 - \(V \rightarrow V/\kappa \)
 - \(I_d \rightarrow I_d/\kappa \)
 - \(P \rightarrow P/\kappa^2 \)

Power Dissipation (Dynamic)

- Capacitive (Dis)charging
 - \(P = (1/2)CV^2f \)
 - \(V \rightarrow V/\kappa \)
 - \(C \rightarrow C/\kappa \)
 - \(P \rightarrow P/\kappa^3 \)

- Increase Frequency?
 - \(f \rightarrow \kappa f \)
 - \(P \rightarrow P/\kappa^2 \)
Effects?

- Area \(\frac{1}{\kappa^2} \)
- Capacitance \(\frac{1}{\kappa} \)
- Resistance \(\kappa \)
- Threshold \(V_{th} \) \(\frac{1}{\kappa} \)
- Current \(I_d \) \(\frac{1}{\kappa} \)
- Gate Delay \(\tau_{gd} \) \(\frac{1}{\kappa} \)
- Wire Delay \(\tau_{wire} \) \(1 \)
- Power \(\frac{1}{\kappa^2} \rightarrow \frac{1}{\kappa^3} \)

Delays?

- If delays in gates/switching?
- If delays in interconnect?
- Logical interconnect lengths?
Delays?

• If delays in gates/switching?
 – Delay reduce with $1/\kappa [\lambda]$

Delays

• Logical capacities growing
• Wirelengths?
 – No locality $\rightarrow \kappa$
 – Rent’s Rule
 • $L \rightarrow n^{(p-0.5)}$
 • [$p>0.5$]
Capacity

- Rent: \(IO = C \cdot N^p \)
- \(p > 0.5 \)
- \(A = C \cdot N^{2p} \)
- Logical Area \(\rightarrow \kappa^2 \)
 - \(\kappa^2 A = C \cdot N_2^{2p} \)
 - \(\kappa^2 N^{2p} = N_2^{2p} \)
 - \(N_2 = \kappa^{(1/p)} N \)
- Sanity Check
 - \(p = 1 \)
 - \(N_2 = \kappa N \)
 - \(p \sim 0.5 \)
 - \(N_2 \sim \kappa^2 N \)

Compute Density

- Density = compute / (Area * Time)
- \(\kappa^3 \) > compute density scaling > \(\kappa \)
 - \(\kappa^3 \): gates dominate, \(p < 0.5 \)
 - \(\kappa^2 \): moderate \(p \), good fraction of gate delay
 - \(\kappa \): large \(p \) (wires dominate area and delay)
Power Density

- $P \rightarrow P/\kappa^2$ (static, or increase frequency)
- $P \rightarrow P/\kappa^3$ (dynamic, same freq.)
 \[A \rightarrow A/\kappa^2 \]
- $P/A \rightarrow P/A \ldots$ or $\ldots P/\kappa A$

Physical Limits

- Doping?
- Features?
Physical Limits

• Depended on
 – bulk effects
 • doping
 • current (many electrons)
 • mean free path in conductor
 – localized to conductors

• Eventually
 – single electrons, atoms
 – distances close enough to allow tunneling

Finishing Up...
Big Ideas
[MSB Ideas]

• Instruction organization induces a design space (taxonomy) for programmable architectures

• Moderately predictable VLSI Scaling
 – unprecedented capacities/capability growth for engineered systems
 – change
 – be prepared to exploit
 – account for in comparing across time

Big Ideas
[MSB-1 Ideas]

• Uniform scaling reasonably accurate for past couple of decades
• Area increase κ^2
 – Real capacity maybe a little less?
• Gate delay decreases ($1/\kappa$)
• Wire delay not decrease, maybe increase
• Overall delay decrease less than ($1/\kappa$)