Please answer the following questions and return before leaving class today. This will not be used to affect your grade or enrollment in this class. I will use it to understand what students already know and how much variance there is among your backgrounds so I can better plan the course.

1. Name:

2. Email address:

3. Your status, year, and option (e.g. G1 CS):

4. What related courses have you taken? (if you’ve taken a non-caltech equivalent, please list what and where)
 - EE4 (digital logic)
 - EE5x (microprocessor/logic project lab)
 - CS20 (intro computer science)
 - CS181 (VLSI)
 - CS237 (compiler)

5. Other courses you are taking this semester (best estimate, fine):

6. Reduce the following to Minimum Sum-of-Products form:
 - $\overline{a} \cdot \overline{b} \cdot c + a \cdot b \cdot \overline{e} + a \cdot b \cdot \overline{c} + a \cdot \overline{b} \cdot c$
 - $(a + b) \cdot (b + \overline{c})$
 - $(a + b) \cdot (\overline{b} + \overline{c})$
 - $(\overline{b} + c) \cdot (a \cdot \overline{b})$

7. How does the area of addition scale with n, the number of inputs to each of the operands? (delay?)
8. How does the area of an **arbitrary** \(n \)-input function scale with \(n \)? (delay? – explain your assumptions)

9. Express the following in Two’s compliment (8b words):

<table>
<thead>
<tr>
<th>← MSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>decimal 10</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>decimal -1</td>
</tr>
<tr>
<td>hexadecimal 23</td>
</tr>
<tr>
<td>decimal -2</td>
</tr>
</tbody>
</table>

10. Draw an **adder** bit-slice using only two-input NAND gates.

11. Write or draw logic to implement the following finite-state machine (one transition per clock, \(\text{in} \) is input, \(\text{o0}, \text{o1} \) outputs):

12. What is the function of this circuit?
13. Identify the Latency and Throughput of above circuit (each gate = 1 time unit):

14. Describe a function which cannot be implemented in purely digital logic:

15. Briefly describe the relative benefits of each of the following (i.e. why/when would I want to use each over the alternatives?)
 - microprocessor
 - custom logic (ASIC)
 - PAL or FPGA