
CS 179: Lecture 12 
Recitation

cuBLAS, cuSolver, and Point Alignment



Homework 4 Released Tonight
-Will be most likely due Friday

-Due date will overlap with set 5, which will be released Wednesday as usual.

- Recommend to turn in Homework 4 by next wednesday

- Set 4 is intentionally easy (hopefully), should give you time to prepare for 
midterms in other classes.



Recap
- cuBLAS is CUDA’s linear algebra library!
- Good for operations between vectors, matrices, etc. 

- Feels like Matlab, Numpy, etc. E Z
- Heavily optimized
- Very general, can use in many applications. For example, many cublas functions subsume 

some of the reductions that we have been writing by hand so far such as parallelized max or 
parallelized sum.

- Why ever write your own kernels?
- More control, sometimes allows for less data i/o

- Many calls can increase overhead
- Bad support / growing environment



Today
- Finish covering cuBlas via example
- What is cuSolver?

- Matrix factorization
- Parallel LU solve

- Point alignment
- Like least squares
- Will solve for a linear transformation that matches one set of points to another



Cublas Example



What is cuSolver
- There are primitive linear solver capabilities within cuBLAS

- Under BLAS-like extensions
- Mostly very primitive, not very well supported.

- cuSOLVER is entirely designed for solving linear systems
- Two big things:

- Factorizations
- Backsubstitution / solving factorized system

- Great for dense linear systems



What is a linear system?
Want to solve this problem:

Ax = b

Know matrix A, know vector b, want to determine what vector x is. 

Naive solution: Invert A if possible!

X = A-1b

Worst solution! Bad numerical stability (same reason that 1/x generally unstable if 
x is small).



Naming Convention -- Like cuBLAS

cusolverDn<t><operation>



Also Has handle
cusolverStatus_t 

cusolverDnCreate(cusolverDnHandle_t *handle);



Factorizations?
Fact: 

Can factorize any matrix A into the following form:

P A = L U 

L = Lower Triangular (1’s on diagonal)

U = Upper triangular 

P = Permutation matrix (for numerical stability)



Why useful?
Want to solve

Ax = b

LU x = P b

=> Solve

L y = Pb

U x = y



Solving triangular matrices is easy!
Backsubstitution.

Can solve multiple RHS simultaneously!



Multiple RHS
Furthermore, multiple RHS increases the parallelism of the application.

Can improve performance, even over fast and optimized CPU code!

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.9349



How to solve on the hw?

cusolverDn<t>getrf()

cusolverDn<t>getrs()

Will do some of the solves simultaneously.

https://docs.nvidia.com/cuda/cusolver/index.html#cuds-lt-t-gt-getrf
https://docs.nvidia.com/cuda/cusolver/index.html#cuds-lt-t-gt-getrs


Point Alignment
Everything in homogeneous coordinates (bias term in ML-lingo)

Want to find matrix M of size 4 x 4

Points X1, N x 4 match to X2, N x 4

Looks like least squares, we will solve:

X1TX1 . MT = X1TX2

Linear system!



Multiple RHS!

X1TX1 . MT = X1TX2

Minimizes distance from X1 points transformed by M to points 
X2.

Set bottom row of M to zero with a 1 at the end.



Questions?


