
CS 179: LECTURE 16

MODEL COMPLEXITY,

REGULARIZATION, AND

CONVOLUTIONAL NETS

LAST TIME

 Intro to cuDNN

 Deep neural nets using cuBLAS and cuDNN

TODAY

 Building a better model for image classification

 Overfitting and regularization

 Convolutional neural nets

MODEL COMPLEXITY

 Consider a class of models 𝑓 𝑥;𝑤

 A function 𝑓 of an input 𝑥 with parameters 𝑤

 For now, let’s just consider 𝑥 ∈ ℝ (1D input) as a toy example

 Polynomial regression fits a polynomial of degree 𝑑 to our

input, i.e. 𝑓 𝑥;𝑤 = 𝑤0 +𝑤1𝑥 + 𝑤2𝑥
2 +⋯+𝑤𝑑𝑥

𝑑

 Intuitively, a higher degree polynomial is a more complex

model function than a lower degree polynomial

INTUITION: TAYLOR SERIES

 More formally, one model class is more complex than

another if it contains more functions

 If we already know the function 𝑔 that we want to

approximate, we can use Taylor polynomials

 For many functions 𝑔, we have 𝑔 𝑥 = σ𝑘=0
∞ 𝑤𝑘𝑥

𝑘

 One way to approximate is as 𝑔 𝑥 ≈ σ𝑘=0
𝑑 𝑤𝑘𝑥

𝑘

 Higher degree polynomial gives a better approximation?

INTUITION: TAYLOR SERIES

 Taylor expansions of sin(𝑥) about 0 for 𝑑 = 1,5,9

LEAST SQUARES FITTING

 Generally, we don’t know the true function a priori

 Instead, we approximate it with a model function 𝑓 𝑥;𝑤

 Rather than Taylor coefficients, we really want parameters
𝑤⋆ that minimize some loss function 𝐽 𝑤 on a dataset

𝑥 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
, e.g. mean squared error:

𝑤⋆ = argmin
𝑤

𝐽(𝑤) = argmin
𝑤

1

𝑁
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝑓 𝑥 𝑖 ; 𝑤
2

LEAST SQUARES FITTING

 Least squares polynomial fits of sin(𝑥) for 𝑑 = 1,5,9

WHY SHOULD YOU CARE?

 So far, it seems like you should always prefer the more

complex model, right?

 That’s because these toy examples assume

 We have a LOT of data

 Our data is noiseless

 Our model function behaves well between our data points

 In the real world, these assumptions are almost always false!

UNDERFITTING & OVERFITTING

 Fitting polynomials to noisy data from the orange function

UNDERFITTING & OVERFITTING

 Goal: learn a model that generalizes well to unseen test data

 Underfitting: model is too simple to learn any meaningful

patterns in the data – high training error and high test error

 Overfitting: model is so complex that it doesn’t generalize

well to unseen data because it pays too much attention to

the training data – low training error but high test error

UNDERFITTING & OVERFITTING

 Underfitting is easy to deal with – try using a more complex
model class because it is more expressive

 Complexity is roughly the “size” of the function space encoded
by a model class (the set of all functions the class can represent)

 Expressiveness is how well that model class can approximate
the functions we are interested in

 If a more complex model class overfits, can we reduce its
complexity while retaining its expressiveness?

REGULARIZATION

 If we make certain structural assumptions about the model

we want to learn, we can do just this!

 These assumptions are called regularizers

 Most commonly, we minimize an augmented loss function

ሚ𝐽 𝑤 = 𝐽 𝑤 + 𝜆𝑅 𝑤

 𝐽 𝑤 is the original loss function, 𝜆 is the regularization

strength, and 𝑅 𝑤 is a regularization term

𝐿2 WEIGHT DECAY

 In 𝐿2 weight decay regularization, 𝑅 𝑤 = 𝑤𝑇𝑤 = σ𝑘=1
𝑑 𝑤𝑘

2

 Minimizing ሚ𝐽 𝑤 = 𝐽 𝑤 + 𝜆𝑤𝑇𝑤

 Balances the goals of minimizing the loss 𝐽 𝑤 and finding a set
of weights 𝑤 that are small in magnitude

 High 𝜆 means we care more about small weights, while low 𝜆
means we care more about a low (un-augmented) loss

 Intuitively, small weights 𝑤  smoother function (no huge
oscillations like the 9th degree polynomial we overfit)

𝐿2 WEIGHT DECAY

 Regularizing a degree 9 polynomial fit with 𝐿2 weight decay

RETURNING TO NEURAL NETS

 All of the intuition we’ve built for polynomials is also valid

for neural nets!

 The complexity of a deep neural net is related (roughly) to

the number of learned parameters and the number of layers

 More complex neural nets, i.e. deeper (more layers) and/or

wider (more hidden units) are much more likely to overfit

to the training data.

RETURNING TO NEURAL NETS

 𝐿2 weight decay helps us learn smoother neural nets by

encouraging learned weights to be smaller.

 To incorporate 𝐿2 weight decay, just do stochastic gradient

descent on the augmented loss function

ሚ𝐽 𝐖 1 , … ,𝐖 𝐿 = 𝐽 𝐖 1 , … ,𝐖 𝐿 + 𝜆෍

𝑖,𝑗,ℓ

𝐖𝑖𝑗
ℓ 2

∇𝐖 ℓ ሚ𝐽 = ∇𝐖 ℓ 𝐽 + 2𝜆𝐖 ℓ

NEURAL NETS AND IMAGE DATA

 Let’s now consider the special case of doing machine learning

on image data with neural nets

 As we’ve studied them so far, neural nets model relationships

between every single pair of pixels

 However, in any image, the color and intensity of neighboring

pixels are much more strongly correlated than those of

faraway pixels, i.e. images have local structure

NEURAL NETS AND IMAGE DATA

 Images are also translation invariant

 A face is still a face, regardless of whether it’s in the top left of

an image or the bottom right

 Can we encode these assumptions of local structure into a

neural network as a regularizer?

 If we could, we would get models that learned something

about our data set as a collection of images.

RECAP: CONVOLUTIONS

 Consider a 𝑐-by-ℎ-by-𝑤 convolutional kernel or filter array

𝐊 and a 𝐶-by-𝐻-by-𝑊 array representing an image 𝐗

 The convolution (technically cross-correlation) 𝐙 = 𝐊⊗ 𝐗 is

𝐙 𝑖, 𝑗, 𝑘 =෍

ℓ=0

𝑐−1

෍

𝑚=0

ℎ−1

෍

𝑛=0

𝑤−1

𝐊[ℓ,𝑚, 𝑛] 𝐗 𝑖 + ℓ, 𝑗 + 𝑚, 𝑘 + 𝑛

 There are multiple ways to deal with boundary conditions;

for now, ignore any indices that are out of bounds

RECAP: CONVOLUTIONS (𝑐 = 1)

http://machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

http://machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

RECAP: CONVOLUTIONS (𝑐 = 3)

Same source as last figure

http://machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

0
0
0

0
1
0

0
0
0

EXAMPLE CONVOLUTIONS WITH RELU

0
−1
0

−1
5
−1

0
−1
0

EXAMPLE CONVOLUTIONS WITH RELU

1

16

1
2
1

2
4
2

1
2
1

EXAMPLE CONVOLUTIONS WITH RELU

1

256

1
4
6
4
1

4
16
24
16
4

6
24
36
24
6

4
16
24
16
4

1
4
6
4
1

EXAMPLE CONVOLUTIONS WITH RELU

1
0
−1

0
0
0

−1
0
1

EXAMPLE CONVOLUTIONS WITH RELU

−1
−1
−1

−1
8
−1

−1
−1
−1

EXAMPLE CONVOLUTIONS WITH RELU

ADVANTAGES OF CONVOLUTION

 By sliding the kernel along the image, we can extract the

image’s local structure!

 Large objects (by blurring)

 Sharp edges and outlines

 Since each output pixel of the convolution is highly local, the

whole process is also translation invariant!

 Convolution is a linear operation, like matrix multiplication

CONVOLUTIONAL NEURAL NETS

 So far, the main downside of convolutions is that the

coefficients of the kernels seem like magic numbers 

 But if we fit a 1D quadratic regression and get the model

𝑓 𝑥 = 0.382𝑥2 − 15.4𝑥 + 7, then aren’t the coefficients

0.382, −15.4, and 7 just magic numbers too?

 Idea: learn convolutional kernels instead of matrices

to extract something meaningful from our image data, and

then feed that into a dense neural network (with matrices)

CONVOLUTIONAL NEURAL NETS

 We can do this by creating a new kind of layer, and adding it

to the front (closer to the input) of our neural network

 In the forward pass, we convolve our input 𝐗 ℓ−1 with a

learned kernel 𝐊 ℓ , add a scalar bias 𝑏 ℓ to every element of

𝐙 ℓ , and apply a nonlinearity 𝜃 to obtain our output 𝐗 ℓ

𝐙 ℓ = 𝐊 ℓ ⊗𝐗 ℓ−1 + 𝑏 ℓ

𝐗 ℓ = 𝜃 𝐙 ℓ

CONVOLUTIONAL NEURAL NETS

 Note that we will actually be attempting to learn multiple
(specifically 𝑐ℓ) kernels of shape 𝑐ℓ−1 × ℎℓ × 𝑤ℓ per layer ℓ!

 𝑐ℓ−1 is the number of channels in input 𝐗 ℓ−1 , so convolving

any individual kernel with 𝐗 ℓ−1 will yield 1 output channel

 The output 𝐗 ℓ is the result of all 𝑐ℓ of these convolutions
stacked on top of each other (1 output channel per kernel)

 If input 𝐗 ℓ−1 has shape 𝑐ℓ−1 × 𝐻ℓ ×𝑊ℓ, then output 𝐗 ℓ

will have shape 𝑐ℓ × 𝐻ℓ − ℎℓ + 1 × (𝑊ℓ −𝑤ℓ + 1)

CONVOLUTIONAL NEURAL NETS

 We then feed the output 𝐗 ℓ into the next layer as its input

 If the next layer is a dense layer, we will re-shape 𝐗 ℓ into a

vector (instead of a multi-dimensional array)

 If the next layer is also convolutional, we can pass 𝐗 ℓ as is

 To actually learn good kernels that stage well with the layers

we feed them into, we can just use the backpropagation

algorithm to do stochastic gradient descent!

CONVOLUTIONAL BACKPROP

 Assume that we have Δ ℓ = ∇𝐗 ℓ [𝐽] (the gradient with

respect to the input of the next layer, which is also the

output of this layer)

 By the chain rule, for each kernel 𝐊 ℓ at this layer ℓ,

𝜕𝐽

𝜕𝐊𝑖𝑗𝑘
ℓ
= ෍

𝑎=1

𝑐ℓ

෍

𝑏=1

𝑤ℓ

෍

𝑐=1

ℎℓ
𝜕𝐽

𝜕𝐙𝑎𝑏𝑐
ℓ

𝜕𝐙𝑎𝑏𝑐
ℓ

𝜕𝐊𝑖𝑗𝑘
ℓ

CONVOLUTIONAL BACKPROP

 By the chain rule (again)

𝜕𝐽

𝜕𝐙𝑎𝑏𝑐
ℓ

=
𝜕𝐽

𝜕𝐗𝑎𝑏𝑐
ℓ

𝜕𝐗𝑎𝑏𝑐
ℓ

𝜕𝐙𝑎𝑏𝑐
ℓ

= Δ𝑎𝑏𝑐
ℓ
𝜃′ 𝐙𝑎𝑏𝑐

ℓ

 This gives us ∇𝐙 ℓ 𝐽 , the gradient with respect to the output

of the convolution

 We can find this with cudnnActivationBackward()

(see Lecture 15) ☺

CONVOLUTIONAL BACKPROP

 If you give cuDNN the

 Gradient with respect to the convolved output ∇𝐙 ℓ 𝐽

 Input to the convolution 𝐗 ℓ−1

 cuDNN can compute each ∇𝐊 ℓ 𝐽 , the gradient of the loss

with respect to each kernel 𝐊 ℓ (Lecture 17) ☺

 With the ∇𝐊 ℓ 𝐽 ’s computed, we can do gradient descent!

CONVOLUTIONAL BACKPROP

 All that remains is for us to find the gradient with respect to

the input to this layer Δ ℓ−1 = ∇𝐗 ℓ−1 𝐽

 This is also the gradient with respect to the output of the next

layer, and will be used to continue doing backpropagation.

 Again, cuDNN has a function for it (Lecture 17)

 You need to provide it the kernels 𝐊 ℓ and the gradient with

respect to the output Δ ℓ = ∇𝐗 ℓ 𝐽 (like a dense neural net)

POOLING LAYERS

 After each convolutional layer, it is common to add a pooling

layer to down-sample the input

 Most commonly, one would take every non-overlapping 𝑛 × 𝑛
window of a convolved output, and replace each window with

a single pixel whose intensity is either

 The maximum intensity found in that 𝑛 × 𝑛 window

 The mean intensity of the pixels in that 𝑛 × 𝑛 window

EXAMPLE OF 2 × 2 POOLING

http://ieeexplore.ieee.org/document/7590035/all-figures

http://ieeexplore.ieee.org/document/7590035/all-figures

POOLING LAYERS

 Motivation: convolution compresses the amount of

information in the image spatially

 Blur  nearby pixels are more similar

 Edge  “important” pixels are brighter than their surroundings

 Why not use that compression to reduce dimensionality?

 Forward and backwards propagation for pooling layers are

fairly straightforward, and cuDNN can do both (Lecture 17)

WHY BOTHER?

 Consider the MNIST dataset of handwritten digits

 Each image is 28 × 28 pixels  784 input dimensions, and it

can be one of 10 output classes

 If we want to train even a linear classifier (not even a neural

net), we would need 784 + 1 × 10 = 7850 parameters

 We’re also modeling relationships between every pair of pixels;

most of the relationships we learn probably aren’t meaningful

CONV NETS ARE BETTER

 Let’s instead consider the following convolutional net:

 Layer 1: Twenty (1 × 5 × 5) kernels

 Layer 2: 2 × 2 pooling

 Layer 3: Five (20 × 3 × 3) kernels

 Layer 4: 2 × 2 pooling

 Layer 5: Dense layer with 50 hidden units

 Layer 6: Dense layer with 10 output units

CONV NETS ARE BETTER

 Input shape (1 × 28 × 28) (MNIST image)

 Twenty (1 × 5 × 5) kernels

 20 × 1 × 5 × 5 + 1 = 520 parameters

 Output shape (20 × 24 × 24)

 2 × 2 pooling

 Output shape (20 × 12 × 12)

CONV NETS ARE BETTER

 Input shape (20 × 12 × 12) (conv 1 + pool 1)

 Five (20 × 3 × 3) kernels

 5 × 20 × 3 × 3 + 1 = 905 parameters

 Output shape (5 × 10 × 10)

 2 × 2 pooling

 Output shape (5 × 5 × 5)

CONV NETS ARE BETTER

 Input shape (5 × 5 × 5) (conv 2 + pool 2)

 Flatten into a 125-dimensional vector

 Dense layer with 50 hidden units

 50 × 125 + 1 = 6300 parameters

 Output is a 50-dimensional vector

 Dense layer with 10 output units

 10 × 50 + 1 = 510 parameters

CONV NETS ARE BETTER

 This gives us a total of 520 + 905 + 6300 + 510 = 8235
parameters, similar to the vanilla linear classifier’s 7850

 However, with the same number of parameters, this model

 Learns something more meaningful about image structure

 Achieves a significantly better accuracy on unseen data

 We’ve effectively regularized the neural net to perform well

on image data! HW6: implement it and see for yourself.

