CS 179: LECTURE 16

MODEL COMPLEXITY,
REGULARIZATION, AND

CONVOLUTIONAL NETS

LAST TIME

® |ntro to cuDNN

= Deep neural nets using cuBLAS and cuDNN

TODAY

= Building a better model for image classification
= Overfitting and regularization

® Convolutional neural nets

MODEL COMPLEXITY

= Consider a class of models f(x; w)

= A function f of an input x with parameters w

= For now, let’s just consider x € R (1D input) as a toy example

= Polynomial regression fits a polynomial of degree d to our
input,i.e. f(x; W) = wg + wyx + wyox? + - + wyx®

= Intuitively, a higher degree polynomial is a more complex
model function than a lower degree polynomial

INTUITION: TAYLOR SERIES

= More formally, one model class is more complex than

another if it contains more functions

= [f we already know the function g that we want to

approximate, we can use Taylor polynomials

= For many functions g, we have g(x) = Yrrowyx"

= One way to approximate is as g(x) =~ 2.¢_, wjx*

= Higher degree polynomial gives a better approximation?

INTUITION: TAYLOR SERIES

= Taylor expansions of sin(x) about 0 for d = 1,5,9

Taylor Approximations of sin(x)

2 2 2
— 1°! order approx — 5" order approx — 9" order approx
sin(x) sin(x) sin(x)
1 1 1 - 1 1 -
F F %
I . %
! i \
) ! I, %
i i i \
0 / 0 / 0 / \
¥ ¥ ¥
'_) \ F | b
¥ % ¥
F 4 " F i
J/ \ /
T T T T _2 T T T T T _2 T T T T T
-2 0 2 4 —4 -2 0 2 4 —4 -2 0 2 4

LEAST SQUARES FITTING

= Generally, we don’t know the true function a priori

= Instead, we approximate it with a model function f (x; w)

= Rather than Taylor coefficients, we really want parameters
w™ that minimize some loss function /(W) on a dataset

{(x(i),y(i))}livzl, e.g. mean squared error:

N
1 . .
w* = argmin](w) — argmin_z (y(l) — f(x(l)’ W))Z
w w o N

2

l_

2

l_

Least-Squares Polynomial Approximations of sin(x)

—— 5 order approx

sin(x)

LEAST SQUARES FITTING

® [east squares polynomial fits of sin(x) for d = 1,5,9

2

l_"\

WHY SHOULD YOU CARE?

= So far, it seems like you should always prefer the more
complex model, right?

= That’s because these toy examples assume
" We have a LOT of data
= Qur data is noiseless

" Our model function behaves well between our data points

= In the real world, these assumptions are almost always false!

UNDERFITTING & OVERFITTING

= Fitting polynomials to noisy data from the orange function

Linear Regression (Underfit) Cubic Regression (Good Fit) Degree 9 Polynomial Regression (Overfit)

UNDERFITTING & OVERFITTING

Goal: learn a model t

Underfitting: mode

nat generalizes well to unseen test data

is too simple to learn any meaningful

patterns in the data — high training error and high test error

Overfitting: model is so complex that it doesn’t generalize

well to unseen data because it pays too much attention to
the training data — low training error but high test error

UNDERFITTING & OVERFITTING

= Underfitting is easy to deal with — try using a more complex
model class because it is more expressive

= Complexity is roughly the “size” of the function space encoded
by a model class (the set of all functions the class can represent)

= Expressiveness is how well that model class can approximate
the functions we are interested in

= |f a more complex model class overfits, can we reduce its
complexity while retaining its expressiveness!

REGULARIZATION

= |f we make certain structural assumptions about the model
we want to learn, we can do just this!

" These assumptions are called regularizers

= Most commonly, we minimize an augmented loss function
Jw) =Jw) + AR (w)

= J(w) is the original loss function, A is the regularization
strength,and R(w) is a regularization term

L, WEIGHT DECAY

w = Zlcg:1 WI%

= In L, weight decay regularization, R(w) = w
= Minimizing J(w) = J(w) + AwTw

= Balances the goals of minimizing the loss J(w) and finding a set
of weights w that are small in magnitude

= High A means we care more about small weights, while low A
means we care more about a low (un-augmented) loss

= |ntuitively, small weights w = smoother function (no huge
oscillations like the 9*" degree polynomial we overfit)

L, WEIGHT DECAY

A =10~ (Overfit)

True Function
- Data

T
— Approximation

A =1 (Good Fit)

6 — Approximation
True Function
5 - K Data

= Regularizing a degree 9 polynomial fit with L, weight decay

A = 10* (Underfit)

— Approximation
v True Function
K Data
%
X
b 4
%
P
T
-3 =2 -1 0

RETURNING TO NEURAL NETS

All of the intuition we've built for polynomials is also valid
for neural nets!

The complexity of a deep neural net is related (roughly) to
the number of learned parameters and the number of layers

More complex neural nets, i.e. deeper (more layers) and/or
wider (more hidden units) are much more likely to overfit
to the training data.

RETURNING TO NEURAL NETS

= [, weight decay helps us learn smoother neural nets by
encouraging learned weights to be smaller.

" TJo incorporate L, weight decay, just do stochastic gradient
descent on the augmented loss function

JWD, ., W) = (WD, . W)+ 2% W
i,J,f

Vi@ [J] = Vi@ /] + 2AW &)

NEURAL NETS AND IMAGE DATA

Let’s now consider the special case of doing machine learning
on image data with neural nets

As we've studied them so far, neural nets model relationships
between every single pair of pixels

However, in any image, the color and intensity of neighboring
pixels are much more strongly correlated than those of
faraway pixels, i.e.images have local structure

NEURAL NETS AND IMAGE DATA

" |mages are also translation invariant

= A face is still a face, regardless of whether it’s in the top left of
an image or the bottom right

= Can we encode these assumptions of local structure into a
neural network as a regularizer?

= |f we could, we would get models that learned something
about our data set as a collection of images.

RECAP: CONVOLUTIONS

K and a C-

® The convo

l],

= Consider a c-by-h-by-w convolutional kernel or filter array

oy-H-by-W array representing an image X

ution (technically cross-correlation) Z = K& X is
c—-1 h—-1 w-1

ZZZK[Tnn i+72,j+m,k+n]

=0 m=0 n=

= There are multiple ways to deal with boundary conditions;
for now, ignore any indices that are out of bounds

RECAP: CONVOLUTIONS (c = 1)

0 0 0 Kernel Matrix
100 | 97 | 96 0 -1 0 320
103 | 101 | 102 -1 5 -1

0 |101 | 98 | 104 | 102 | 100 0 -1 0

0 99 | 101 | 106 | 104 | 99

0 104 | 104 | 104 | 100 | °8

Image Matrix 0+0+0x—-1+0+0 Output Matrix
4+0*—-14+105*5+102+*—1
+0*0+103*—-14+99+«0 = 320

http://machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

http://machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

RECAP: CONVOLUTIONS (¢ = 3)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 156 | 155 | 156 | 158 | 158 0 167 | 166 | 167 | 169 | 169 163 | 165 | 165
0 |153 | 254 | 157 | 159 | 159 | .. o | 164 | 165 | 168 | 170 | 170 164 | 166 | 166
0 149 | 151 | 155 | 158 | 159 0 160 | 162 | 166 | 169 | 170 0 156 | 158 | 162 | 165 | 166
0 146 | 146 | 149 | 153 | 158 0 156 | 156 | 159 | 163 | 168 0 155 | 155 | 158 | 162 | 167
0 |145 | 143 | 143 | 148 | 158 | .. 0 | 155 | 153 | 153 | 158 | 168 | .. o | 154 | 152 | 152 | 157 | 167
Input Channel #1 (Red) Input Channel #2 (Green) Input Channel #3 (Blue)
-1]-1] 1 i 0 0
e et 1(-1](-1
O/ 1N 1(0]|-1
Kernel Channel #1 Kernel Channel #2 Kernel Channel #3
Output
| ﬂ |
308 + —498 + 164 +1=-25

I

Same source as last figure Bias = 1

http://machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.html

EXAMPLE CONVOLUTIONS WITH RELU

o O O
O = O
o O O

EXAMPLE CONVOLUTIONS WITH RELU

0 —1 0]
-1 5 -1
L0 -1 0.

EXAMPLE CONVOLUTIONS WITH RELU

—_ N
N AN
_ N

EXAMPLE CONVOLUTIONS WITH RELU

— B O D

N

_ DN
o B~ O
N W N
=ON b
_ DN
o B~ O

N

@)}

@)}

N

N

R e

EXAMPLE CONVOLUTIONS WITH RELU

| S R
ey L e e
s v, s v 2 &
s T o AR ';w'_) vl

A¥

|
-

— i A e~ —————

- —te e —— - .
2 20 r e
v'n -, = "\ -

O =
o O O
_ O

EXAMPLE CONVOLUTIONS WITH RELU

—1 -1 —1°
-1 8 —1
-1 -1 —1.

AN

ADVANTAGES OF CONVOLUTION

= By sliding the kernel along the image, we can extract the
image’s local structure!

= Large objects (by blurring)

= Sharp edges and outlines

= Since each output pixel of the convolution is highly local, the
whole process is also translation invariant!

= Convolution is a linear operation, like matrix multiplication

CONVOLUTIONAL NEURAL NETS

= So far, the main downside of convolutions is that the
coefficients of the kernels seem like magic numbers ©®

= But if we fit a 1D quadratic regression and get the model
f(x) = 0.382x% — 15.4x + 7, then aren’t the coefficients
0.382, —15.4,and 7 just magic numbers too!

® |dea: learn convolutional kernels instead of matrices
to extract something meaningful from our image data, and
then feed that into a dense neural network (with matrices)

CONVOLUTIONAL NEURAL NETS

" We can do this by creating a new kind of layer, and adding it
to the front (closer to the input) of our neural network

® |n the forward pass, we convolve our input X®=1 with a
learned kernel K, add a scalar bias b™® to every element of
Z® and apply a nonlinearity 8 to obtain our output .42

7)) = KW @ X1 4 p&)
) = Q(Z(f’))

CONVOLUTIONAL NEURAL NETS

= Note that we will actually be attempting to learn multiple

(specifically c¢y) kernels of shape c,_; X hy X w, per layer £!

= c,_, is the number of channels in input X1, so convolving
any individual kernel with X =1 will yield 1 output channel

= The output X is the result of all ¢, of these convolutions
stacked on top of each other (1 output channel per kernel)

= If input X1 has shape c,_; X Hy X W, then output X¥)
will have shape c, X (Hy —h, + 1) X (W, —w, + 1)

CONVOLUTIONAL NEURAL NETS

= We then feed the output X¥) into the next layer as its input

= [f the next layer is a dense layer, we will re-shape X® into a
vector (instead of a multi-dimensional array)

= If the next layer is also convolutional, we can pass X*) as is

" TJo actually learn good kernels that stage well with the layers
we feed them into, we can just use the backpropagation
algorithm to do stochastic gradient descent!

CONVOLUTIONAL BACKPROP

Assume that we have A®) = Vi@ /] (the gradient with

respect to the input of the next layer, which is also the
output of this layer)

By the chain rule, for each kernel K at this layer #,
Ce Wy hy Z({)

30
oK) 0z 9K'!)

Lk a=1b=1c=1 abc Ljk

CONVOLUTIONAL BACKPROP

= By the chain rule (again)

£
aj d] 5Xfw)c_ &) a1 (D)
7@ @ (0 Sanct (Zabe)
abc abc abc

= This gives us V. |/], the gradient with respect to the output
of the convolution

= We can find this with cudnnActivationBackward ()
(see Lecture 15) ©

CONVOLUTIONAL BACKPROP

= |f you give cuDNN the

= Gradient with respect to the convolved output V., [/]

= Input to the convolution X~V

= cuDNN can compute each V(5 |[/], the gradient of the loss
with respect to each kernel K) (Lecture 17) ©

= With the V(s |/]'s computed, we can do gradient descent!

CONVOLUTIONAL BACKPROP

= All that remains is for us to find the gradient with respect to
the input to this layer AC-D = Vye-1) /]

= This is also the gradient with respect to the output of the next
layer, and will be used to continue doing backpropagation.

= Again, cuDNN has a function for it (Lecture |7)

= You need to provide it the kernels K and the gradient with
respect to the output AY) = Vi@ /] (like a dense neural net)

POOLING LAYERS

After each convolutional layer, it is common to add a pooling
layer to down-sample the input

= Most commonly, one would take every non-overlapping n X n
window of a convolved output, and replace each window with
a single pixel whose intensity is either

® The maximum intensity found in that n X n window

" The mean intensity of the pixels in that n X n window

EXAMPLE OF 2 X 2 POOLING

Sampled Image Max Pooling

32
> .
BERNE 17 o1 | 36
Sliding
Window ® 14
51 | 42 | 35 | 22 Mean Pooling
Filtered Data 40 1191 15| 36 23
Original Data 38 | 27
Convolutional Filter

(@) (b)

http://ieeexplore.ieee.org/document/7590035/all-figures

http://ieeexplore.ieee.org/document/7590035/all-figures

POOLING LAYERS

= Motivation: convolution compresses the amount of
information in the image spatially

= Blur = nearby pixels are more similar
= Edge - “important” pixels are brighter than their surroundings

" Why not use that compression to reduce dimensionality?

= Forward and backwards propagation for pooling layers are
fairly straightforward, and cuDNN can do both (Lecture 17)

WHY BOTHER!?

= Consider the MNIST dataset of handwritten digits

= Each image is 28 X 28 pixels = 784 input dimensions, and it
can be one of 10 output classes

= [f we want to train even a linear classifier (not even a neural
net), we would need (784 4+ 1) X 10 = 7850 parameters

" We're also modeling relationships between every pair of pixels;
most of the relationships we learn probably aren’t meaningful

CONYV NETS ARE BETTER

® Let’s instead consider the following convolutional net:

= Layer |: Twenty (1 X 5 X 5) kernels
= Layer 2: 2 X 2 pooling

= [ayer 3: Five (20 X 3 X 3) kernels
= Layer 4: 2 X 2 pooling

= [ayer 5: Dense layer with 50 hidden units

= Layer 6: Dense layer with 10 output units

CONYV NETS ARE BETTER

= |nput shape (1 X 28 X 28) (MNIST image)

= Twenty (1 X 5 X 5) kernels
20 X ((1 X5X5)+ 1) = 520 parameters
= Qutput shape (20 X 24 X 24)

= 2 X 2 pooling
= Qutput shape (20 X 12 X 12)

CONYV NETS ARE BETTER

= |nput shape (20 X 12 X 12) (conv 1 + pool 1)
= Five (20 X 3 X 3) kernels

= 5% ((20 X3 X3)+ 1) = 905 parameters

= Qutput shape (5 X 10 x 10)

= 2 X 2 pooling

= Qutput shape (5 X 5 X 5)

CONYV NETS ARE BETTER

= |nput shape (5 X5 X 5) (conv 2 + pool 2)

= Flatten into a 125-dimensional vector

= Dense layer with 50 hidden units
= 50X (125+ 1) = 6300 parameters
= Qutput is a 50-dimensional vector

® Dense layer with 10 output units
= 10 X (504 1) = 510 parameters

CONYV NETS ARE BETTER

= This gives us a total of 520 + 905 + 6300 + 510 = 8235

parameters, similar to the vanilla linear classifier’s 7850

= However, with the same number of parameters, this model
= Learns something more meaningful about image structure

= Achieves a significantly better accuracy on unseen data

= We've effectively regularized the neural net to perform well
on image data! HWé: implement it and see for yourself.

