
CS 179: GPU 
Programming

Lecture 7



Last Week

• Memory optimizations using different GPU 
caches

• Atomic operations

• Synchronization with __syncthreads()



Week 3

• Advanced GPU-accelerable algorithms

• “Reductions” to parallelize problems that 
don’t seem intuitively parallelizable

– Not the same as reductions in complexity theory 
or machine learning!



This Lecture

• GPU-accelerable algorithms:

– Sum of array

– Prefix sum

– Stream compaction

– Sorting (quicksort)



Elementwise Addition

• CPU code:
float *C = malloc(N * sizeof(float));

for (int i = 0; i < N; i++)

C[i] = A[i] + B[i];

• GPU code:
// assign device and host memory pointers, and allocate memory 
in host

int thread_index = threadIdx.x + blockIdx.x * blockDim.x;

while (thread_index < N) {

C[thread_index] = A[thread_index] + B[thread_index];

thread_index += blockDim.x * gridDim.x;

}

Problem: C[i] = A[i] + B[i]



Reduction Example

• GPU Pseudocode:
// set up device and host memory pointers
// create threads and get thread indices
// assign each thread a specific region to sum over
// wait for all threads to finish running ( __syncthreads; )
// combine all thread sums for final solution

• CPU code:
float sum = 0.0;

for (int i = 0; i < N; i++)

sum += A[i];

Problem: SUM(A[])



Naive Reduction

• Suppose we wished to accumulate our 
results…



Naive Reduction

• Race conditions! Could load old value before 
new one (from another thread) is written out

Thread-unsafe!



Naive (but correct) Reduction

• We could do a bunch of atomic adds to our 
global accumulator…



Naive (but correct) Reduction

• But then we lose a lot of our parallelism 

Every thread needs
to wait…



Shared memory accumulation

• Right now, the only parallelism we get is 
partial sums per thread

• Idea: store partial sums per thread in shared 
memory

• If we do this, we can accumulate partial sums 
per block in shared memory, and THEN 
atomically add a much larger sum to the 
global accumulator



Shared memory accumulation



Shared memory accumulation



Shared memory accumulation

• It doesn’t seem particularly efficient to have 
one thread per block accumulate for the 
entire block…

• Can we do better?



“Binary tree” reduction

Thread 0 atomicAdd’s
this to global result



“Binary tree” reduction

Use __syncthreads() 
before proceeding!



“Binary tree” reduction

• Warp Divergence! Odd threads won’t even execute.



Non-divergent reduction



• Shared Memory Bank Conflicts!

– 2-way on 1st iteration, 4-way on 2nd iteration, …

Non-divergent reduction



Sequential addressing

• Automatically resolves bank conflicts!



Sum Reduction

• More improvements possible (gets crazy!)

– “Optimizing Parallel Reduction in CUDA” (Harris)

• Code examples!

• Moral:

– Different type of GPU-accelerated problems

• Some are “parallelizable” in a different sense

– More hardware considerations in play

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf


Outline

• GPU-accelerated:

– Sum of array

–Prefix sum

– Stream compaction

– Sorting (quicksort)



Prefix Sum

• Given input sequence x[n], produce sequence

𝑦 𝑛 = ෍

𝑘=0

𝑛−1

𝑥 𝑘

– e.g. x[n] = (1, 1, 1, 1, 1, 1, 1)

-> y[n] = (0, 1, 2, 3, 4, 5, 6)

– e.g. x[n] = (1, 2, 3, 4, 5, 6)

-> y[n] = (0, 1, 3, 6, 10, 15)



Prefix Sum

• Given input sequence x[n], produce sequence

𝑦 𝑛 = ෍

𝑘=0

𝑛−1

𝑥 𝑘

– e.g. x[n] = (1, 2, 3, 4, 5, 6)

-> y[n] = (0, 1, 3, 6, 10, 15)

• Recurrence relation:
𝑦 𝑛 = 𝑦 𝑛 − 1 + 𝑥 𝑛



Prefix Sum

• Recurrence relation:
𝑦 𝑛 = 𝑦 𝑛 − 1 + 𝑥 𝑛

– Is it parallelizable? Is it GPU-accelerable?

• Recall:
– 𝑦 𝑛 = 𝑥 𝑛 + 𝑥 𝑛 − 1 +⋯+ 𝑥[𝑛 − 𝐾 − 1 ]

» Easily parallelizable!

– 𝑦 𝑛 = 𝑐 ∙ 𝑥 𝑛 + 1 − 𝑐 ∙ 𝑦 𝑛 − 1

» Not so much



Prefix Sum

• Recurrence relation:
𝑦 𝑛 = 𝑦 𝑛 − 1 + 𝑥 𝑛

– Is it parallelizable? Is it GPU-accelerable?

• Goal:

– Parallelize using a “reduction-like” strategy



Prefix Sum sample code (up-sweep)

[1, 3, 3, 10, 5, 11, 7, 36]

[1, 3, 3, 10, 5, 11, 7, 26]

[1, 3, 3, 7, 5, 11, 7, 15]

[1,  2,  3, 4,  5,  6,  7,  8]

Original array

We want: 

[0, 1, 3, 6, 10, 15, 21, 28]
(University of Michigan EECS, 
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

for d = 0 to (log2n) -1 do
for all k = 0 to n-1 by 2d+1 in parallel do

x[k + 2d+1 – 1] = x[k + 2d -1] + x[k + 2d] 



Prefix Sum sample code (down-sweep)

[1, 3, 3, 10, 5, 11, 7, 36]

[1, 3, 3, 10, 5, 11, 7,   0]

[1, 3, 3, 0,   5, 11, 7, 10]

[1, 0, 3, 3, 5, 10, 7, 21]

[0, 1, 3, 6, 10, 15, 21, 28]
Final result

Original:  [1, 2, 3, 4, 5, 6, 7, 8]

(University of Michigan EECS, 
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf

x[n-1] = 0
for d = log2(n) – 1 down to 0 do

for all k = 0 to n-1 by 2d+1 in parallel do
t = x[k + 2d – 1] 
x[k + 2d – 1] = x[k + 2d]
x[k + 2d] = t + x[k + 2d]



Prefix Sum (Up-Sweep)

Original 
array

Use __syncthreads() 
before proceeding!

(University of Michigan EECS, 
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf



Prefix Sum (Down-Sweep)

Final 
result

Use __syncthreads() 
before proceeding!

(University of Michigan EECS, 
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf



Prefix Sum

• Bank conflicts galore!

– 2-way, 4-way, …



Prefix Sum

• Bank conflicts!

– 2-way, 4-way, …

– Pad addresses!

(University of Michigan EECS, 
http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf



Prefix Sum

• http://http.developer.nvidia.com/GPUGems3/
gpugems3_ch39.html -- See Link for a More 
In-Depth Explanation of Up-Sweep and Down-
Sweep

• See also Ch8 of textbook (Kirk and Hwu) for a 
more build-up and motivation for the up-
sweep and down-sweep algorithm (like we did 
for the array sum)

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html


Outline

• GPU-accelerated:

– Sum of array

– Prefix sum

– Stream compaction

– Sorting (quicksort)



Stream Compaction

• Problem: 

– Given array A, produce sub-array of A defined by 
Boolean condition

– e.g. given array:

• Produce array of numbers > 3

2 5 1 4 6 3

5 4 6



Stream Compaction

• Given array A:

– GPU kernel 1: Evaluate boolean condition,

• Array M: 1 if true, 0 if false

– GPU kernel 2: Cumulative sum of M (denote S)

– GPU kernel 3: At each index,

• if M[idx] is 1, store A[idx] in output at position (S[idx] - 1) 

2 5 1 4 6 3

0 1 0 1 1 0

0 1 1 2 3 3

5 4 6



Outline

• GPU-accelerated:

– Sum of array

– Prefix sum

– Stream compaction

– Sorting (quicksort)



GPU-accelerated quicksort

• Quicksort:

– Divide-and-conquer algorithm

– Partition array along chosen pivot point

• Pseudocode:
quicksort(A, loIdx, hiIdx):

if lo < hi:

pIdx := partition(A, loIdx, hiIdx)

quicksort(A, loIdx, pIdx - 1)

quicksort(A, pIdx + 1, hiIdx)

Sequential 
partition



GPU-accelerated partition

• Given array A:

– Choose pivot (e.g. 3)

– Stream compact on condition:  ≤ 3

– Store pivot

– Stream compact on condition:  > 3   (store with offset)

2 5 1 4 6 3

2 1

2 1 3

2 1 3 5 4 6



GPU acceleration details

• Synchronize between calls of the previous 
algorithm

• Continued partitioning/synchronization on 
sub-arrays results in sorted array



Final Thoughts

• “Less obviously parallelizable” problems

– Hardware matters! (synchronization, bank 
conflicts, …)

• Resources:

– GPU Gems, Vol. 3, Ch. 39

– Highly Recommend Reading This Guide to CUDA 
Optimization, with a Reduction Example

– Kirk and Hwu Chapters 7-12 for more parallel
algorithms

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf

